CASCADED ON-OFF SOURCES

Here I define a Markovian cascaded on-off source with parameters (m, λ, μ) . The parameter m gives the long run mean rate (in bits/sec), the on times are determined by the parameter λ , the off times are determined by the parameters λ and μ . Many variations of the following construction are possible. I describe the simplest.

Let $\{X_n(t), t \geq 0\}$ (n = 1, 2, 3, ...) be a sequence of independent stationary Continuous Time Markov Chains (CTMC) on state space $\{0, 1\}$ with rate matrix

$$\left[\begin{array}{ccc} -2^{n-1}\mu & 2^{n-1}\mu \\ 2^{n-1}\lambda & -2^{n-1}\lambda \end{array}\right].$$

Define

$$Y_n(t) = \prod_{i=1}^n X_i(t), \quad t \ge 0, \quad n = 1, 2, 3, ...$$

Next define

$$Z_n(t)=m\left(rac{\lambda+\mu}{\mu}
ight)^nY_n(t),\quad t\geq 0,\ \ n=1,2,3,...$$

 $\{Z_n(t), t \geq 0\}$ is a (stationary) instantaneous rate process of a level-n cascaded on-off source. Notice that for any given $n \geq 1$, $\{Z_n(t), t \geq 0\}$ is an on-off source with iid exponential on times with parameter (i.e., 1/mean) $(2^n - 1)\lambda$, and iid (non-exponential) off times with mean $[(\frac{\lambda+\mu}{\mu})^n - 1]/((2^n - 1)\lambda)$, and long-run mean rate m.

An interesting observation: the mean on time goes to 0 as n goes to infinity. As $n \to \infty$, the mean off time goes to zero if $\lambda < \mu$, goes to infinity if $\lambda > \mu$ and stays constant $(=1/\lambda)$ if $\lambda = \mu$. However, the ratio of mean off times to the mean on times always goes to infinity. Hence I suspect the limiting behavior of the Z_n process (as $n \to \infty$) may depend on the relative magnitudes of λ and μ , displaying fractal behavior when $\lambda < \mu$.

The On times: To describe the on times consider the *n*-dimensional CTMC $\{(X_1(t), X_2(t), ..., X_n(t)), t \geq 0\}$. Let *a* be a *n*-vector of all ones. The Z_n process is in state 1 if and only if the multidimensional process is in state *a*. The rate at which it exits state *a* is $\lambda + 2\lambda + 4\lambda + ... + 2^{n-1}\lambda = (2^n - 1)\lambda$. Hence the on times are iid exponential rvs with mean $1/((2^n - 1)\lambda)$.

The Off times: Let a_i be a n-vector whose ith coordinate is zero and all other coordinates are 1 (i = 1, 2, ..., n). When the multidimentional process leaves state a (the Z_n process enters state 0) it enters state a_i with rate $2^{i-1}/(2^n - 1)$

1). Let T_i be the first passage time of the multidimensional CTMC from state a_i into state a. Then the off time is T_i with probability $2^{i-1}/(2^n-1)$. Exact computation of the cdf of T_i seems complicated, but its LST can be computed fairly easily.

Let $\rho = \lambda/\mu$, and define

$$h(t) = P(X_j(t) = 1, j = 1, 2, ..., n | X_j(0) = 1, j = 1, 2, ..., n)$$
$$= \left(\frac{\mu}{\lambda + \mu}\right)^n \prod_{j=1}^n \left(1 + \rho e^{-2^{j-1}(\lambda + \mu)t}\right),$$

and

$$h_i(t) = P(X_j(t) = 1, j = 1, 2, ..., n | X_j(0) = 1, j \neq i, X_i(t) = 0)$$
$$= \left(\frac{\mu}{\lambda + \mu}\right)^n \left(1 - e^{-2^{i-1}(\lambda + \mu)t}\right) \prod_{j=1, j \neq i}^n \left(1 + \rho e^{-2^{j-1}(\lambda + \mu)t}\right).$$

Let $\tilde{h}(s)$ be the Laplace Transform of h(t) and $\tilde{h}_i(s)$ be the Laplace Transform of $h_i(t)$. Then

$$\phi_i(s) = E(e^{-sT_i}) = \frac{\tilde{h}_i(s)}{\tilde{h}(s)}.$$

 $h_i(t)$ also provides a simple upper bound on the distribution of T_i . The probability distribution and the LSt of of the off time T is given by

$$P(T \le t) = \sum_{i=1}^{n} \frac{2^{i-1}}{2^n - 1} P(T_i \le t),$$

$$\phi(s) = E(e^{-sT}) = \sum_{i=1}^{n} \frac{2^{i-1}}{2^{n} - 1} \phi_i(s).$$

Since the off time starts whenever the multidimensional CTMC jumps out of state a, we see that the successive off times are iid.

The autocovariance function: can be easily calculated to be

$$Cov(Z_n(t), Z_n(0)) = m^2 \left[\prod_{i=1}^n \left(1 + \rho e^{-2^{i-1}(\lambda + \mu)t} \right) - 1 \right].$$

Thus the autocovariance dies off exponentially, dominated by the exponential decay rate of $\lambda + \mu$. Thus, clearly the process will not display long range dependence! To get that (I feel that) we need to start with stationary semi-Markov processes with off time distributions having power laws.

Queueing Analysis. Since the level-n cascaded process is an on-off process with iid exponential on times and generally distributed off times, one can use the existing theory to do the queueing analysis. Let c be the output rate of the buffer, and

$$r_n = m \left(\frac{\lambda + \mu}{\mu}\right)^n,$$

 $\lambda_n = (2^n - 1)\lambda.$

Let η be the smallest solution to

$$\phi(\eta c) = 1 - \frac{\eta(r_n - c)}{\lambda_n}.$$

Let B be the steady state buffer content. We have

$$P(B > x) \le e^{-\eta x}$$
.

Parameter Estimation: The trace data gives the following.

- 1. The peak rate r_{peak} is the true transmission rate of the medium, in bits per second.
- 2. N = total number of packets in the trace
- 3. $T_i = \text{start time of the } i \text{th packet, in secs. } (i = 1, 2, ..., N)$
- 4. S_i = size of the *i*th packet, in bits. (i = 1, 2, ..., N)

The estimation procedure is:

1. Estimate the mean rate r_{mean} by

$$\hat{r}_{mean} = rac{\sum_{i} S_{i}}{T_{N}}.$$

2. Estimate the mean on time τ_{on} by

$$\hat{\tau}_{on} = \frac{\sum_{i} S_i}{N r_{neak}}.$$

3. Estimate the mean off time τ_{off} by

$$\hat{ au}_{off} = rac{T_N}{N} - \hat{ au}_{on}.$$

4. For each n = 1, 2, 3... compute

$$\hat{\lambda}_n = \frac{1}{\hat{\tau}_{on}(2^n - 1)},$$

$$\hat{\mu}_n = \frac{\hat{\lambda}_n}{\left[\frac{\hat{\tau}_{off}}{\hat{\tau}_{on}} + 1\right]^{1/n} - 1}.$$

5. Choose an n to make the two sides of the following equations as nearly equal as possible:

$$\log r_{peak} = \log \hat{r}_{mean} + n \log \left(\frac{\hat{\lambda}_n + \hat{\mu}_n}{\hat{\mu}_n} \right).$$

What can we do with this?

- 1. Plot the sample paths to see if they "look" reasonable.
- 2. Estimate m, λ and μ .
- 3. Study the fractal properties of the limit of Z_n as $n \to \infty$.