A CASCADED ON-OFF MODEL OF SESSION TRACES

V G Kulkarni

CASCADED ON-OFF MODEL

- The cascaded on-off source model has four parameters:
 - 1. m = the long run mean rate (in bits/sec).
 - 2. n = order of the cascade (positive integer).
 - 3. $\lambda = \text{basic arrival rate of interruptions (per sec)}$. Level i interruptions arrive according to a Poisson process at rate $2^{i-1}\lambda$ (i=1,2,...,n).
 - 4. μ = recovery rate (per sec). It takes an exponential amount of time with mean $1/(2^{i-1}\mu)$ to recover from an interruption of level i (i = 1, 2, ..., n). When the source is recovering from an interruption from level i, other interruptions of level i have no effect.
- Higher the level of interruption, the faster they arrive, and the quicker the source recovers from them.
- Interruption streams from different levels are independent of each other.

THE RATE MODEL

The source produces traffic at rate

$$R_n = m \left(\frac{\lambda + \mu}{\mu}\right)^n$$

whenever it is not recovering from any interruption.

The expression for R_n above is chosen so that the long run rate at which the source produces traffic is given by m.

MATHEMATICAL MODEL

- Let $X_i(t) = 0$ if the source is recovering from a level i interruption at time t, and 1 otherwise (assuming the source is subjected to interruptions of level i alone).
- $\{X_i(t), t \geq 0\}$ is a Continuous Time Markov Chains (CTMC) on state space $\{0, 1\}$ with rate matrix

$$\begin{bmatrix} -2^{i-1}\mu & 2^{i-1}\mu \\ 2^{i-1}\lambda & -2^{i-1}\lambda \end{bmatrix}.$$

• Let $Y_n(t) = 1$ if the source is transmitting at time t, and 0 otherwise. Then

$$Y_n(t) = \prod_{i=1}^n X_i(t), \quad t \ge 0.$$

• Let $Z_n(t)$ be the instantaneous rate at which the source is transmitting traffic at time t. Then

$$Z_n(t) = R_n Y_n(t), \quad t \ge 0.$$

• Show graphs.

ANALYTICAL RESULTS

- $\{Z_n(t), t \geq 0\}$ is an on-off process with iid exponential on times with parameter (i.e., 1/mean) $(2^n 1)\lambda$, and iid (non-exponential) off times with mean $[(\frac{\lambda + \mu}{\mu})^n 1]/((2^n 1)\lambda)$, and longrun mean rate m.
- The mean on time goes to 0 as n goes to infinity.
- The mean off time goes to zero if $\lambda < \mu$, goes to infinity if $\lambda > \mu$ and stays constant $(= 1/\lambda)$ if $\lambda = \mu$ (as $n \to \infty$).
- The ratio of mean off times to the mean on times always goes to infinity (as $n \to \infty$).
- The autocovariance function can be calculated to be

$$Cov(Z_n(t), Z_n(0)) = m^2 \left[\prod_{i=1}^n \left(1 + \rho e^{-2^{i-1}(\lambda + \mu)t} \right) - 1 \right].$$

Thus the autocovariance dies off exponentially, dominated by the exponential decay rate of $\lambda + \mu$. Thus, clearly the process will not display long range dependence!

PARAMETER ESTIMATION

The trace data:

- 1. The peak rate r_{peak} is the true transmission rate of the medium, in bits per second.
- 2. N = total number of packets in the trace.
- 3. $T_i = \text{start time of the } i \text{th packet, in secs } (i = 1, 2, ..., N).$
- 4. $S_i = \text{size of the } i \text{th packet, in bits } (i = 1, 2, ..., N).$

The estimation procedure:

1. Estimate the mean on time τ_{on} by

$$\hat{\tau}_{on} = \frac{\sum_{i} S_{i}}{N r_{peak}}.$$

2. Estimate the mean off time τ_{off} by

$$\hat{ au}_{off} = rac{T_N}{N} - \hat{ au}_{on}.$$

3. For each n = 1, 2, 3... compute

$$\hat{\lambda}_n = \frac{1}{\hat{\tau}_{on}(2^n - 1)},$$

$$\hat{\mu}_n = \frac{\hat{\lambda}_n}{\left[\frac{\hat{\tau}_{off}}{\hat{\tau}_{on}} + 1\right]^{1/n} - 1}.$$

4. Estimate the long run mean rate by

$$\hat{m} = r_{peak} \left(\frac{\hat{\lambda}_n + \hat{\mu}_n}{\hat{\mu}_n} \right)^{-n}.$$

5. There is no unique way to choose n. Try various values, and generate simulated samples. Pick the smallest n that produces "reasonable" looking sample paths.

FUTURE RESEARCH

- Plot the sample paths to see if they "look" reasonable.
- Estimate m, λ and μ in a more sophisticated manner.
- Study the fractal properties of the limit of Z_n as $n \to \infty$.