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Abstract

For bivariate heavy tailed data, the extremes may carry distinctive de-
pendence information not seen from moderate values. For example a large
value in one component may help cause a large value in the other. This
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is the idea behind the notion of extremal dependence . We discuss ways
to detect and measure extremal dependence. We apply the techniques
discussed to internet data and conclude that for files transferred, file size
and throughput (the inferred rate at which the file is transferred) exhibit
extremal independence.

1 Introduction
Internet file transfers are frequently subject to delays of various types. One
might expect that larger file transfers tend to encounter more delays. In this
paper it is seen that for very large transfers this notion is overly simplistic,
using some novel ideas from statistics and probability. In particular, in the
context of HTTP (web browsing) responses, the joint behavior of large values
of three variables, size of response, time duration of response, and throughput
(rate = size / time) are considered. In Section 3 it is seen that for the largest
responses, throughput tends to be more closely related to time, and essentially
independent of response size. This result is consistent with that of Maulik,
Resnick and Rootzén (2002). See also Resnick (2001), (2003).
The identification of the tendency of large values of object size and through-

put to be independent has important ramifications for networking researchers.
While the very large file transfers considered here are comparatively rare, mea-
surements of Internet web traffic demonstrate that the transfer of these files
comprises a significant fraction of all the bytes transferred on the Internet (e.g.,
25% of all the bytes traversing a gigabit per second access link during a multi-
hour observation interval). Hence understanding the dynamics of these transfers
is critical to understanding the impact of diverse networking technologies such
as routing, congestion control, and server design on end-user performance mea-
sures. For example, during file transfers, Internet servers typically maintain
state on the status of the transfer and the maintenance of this state is a signif-
icant factor affecting the scalability of servers (i.e., the ability of servers to ser-
vice increasing numbers of connections or clients). Conventional wisdom leads
one to eschew large file transfers (and hence the hosting of large files) as their
(supposed) extreme transfer times may reduce the servers request throughput
(request completion rate). The analysis presented here suggests these concerns
may be unfounded. This agrees with the network-centric intuition that the
rate of communication depends only on the network technology and not in the
amount of data transferred. It is interesting, however, to confirm that the net-
work does behave in the expected way as this implies that no extra bottlenecks
are experienced by long file transfers. Viewed another way, the indications of
extremal dependence of inverse throughput and duration seem to suggest that
a significant percentage of the longest durations are due to low throughput
rates rather than large file transfers. This supports a hypothesis that persis-
tent network pathologies (e.g., persistent network congestion or misconfigured
routers/servers), or the heterogeneity of the network technologies used to con-
nect end-systems to the Internet (from slow modems to gigabit Ethernet), dis-
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tort the natural dependency between size and duration.
An almost opposite conclusion is presented in Zhang, Breslau, Paxson and

Schenker (2002). This difference will be analyzed and reconciled with the above
ideas, using a very careful analysis of different thresholding methods, in an up-
coming paper. In this new paper it is seen that the differing conclusions are due
to a surprisingly large systematic impact, of the choice of variable that is chosen
for thresholding, on the log-log correlation coefficient. A major advantage of
the methods developed here is that they work in terms of threshold methods
that are unaffected in this way.
We base the statistical analysis in this paper on the notion of “extremal

dependence”, a concept motivated by multivariate extreme value theory. The
idea is that dependence between large values of a bivariate vector can be of dif-
ferent strength than dependence between moderate values. For joint bivariate
probability distributions having heavy tailed marginal distributions (applicable
to the data discussed above), the large values carry a useful type of depen-
dence information. An example is “asymptotic independence”, see Chapter 5 of
Resnick (1987) for a formal introduction, and see Resnick (2002) for an overview
of recent work in this area. Section 2 surveys this background. Asymptotic in-
dependence is the concept that for a bivariate random vector with heavy tailed
distribution, the probability of both variables being large simultaneously is neg-
ligible in comparison to the probability of one of them being large. Extreme
values of the two variables tend to occur separately, not simultaneously.
Figure 1 shows some examples that illustrate this concept for HTTP response

size variables. The displays are “scatterplots”, where pairs of data are plotted
in the Cartesian plane as a graphical device for studying the structure of each
joint bivariate distribution.
The data shown in Figure 1 are based on HTTP responses, gathered from

the UNC main link during April of 2001. An HTTP “response” is defined here
to be the set of packets associated with a single HTTP data transfer, and “du-
ration” is taken as the time between the first and last packets. To allow study
of diurnal effects, packets were gathered over 21 four hour blocks, over each
of the 7 days of the week, and for “morning” (8:00AM-12:00AM), “afternoon”
(1:00PM-5:00PM) and “evening” (7:30PM-11:30PM) periods on each day. The
total number of HTTP flows over the four hour blocks ranged from ∼ 1 million
(weekend mornings) to ∼ 7 million (weekday afternoons). Here we only con-
sider “large flows”, defined to mean those with more than 100 kilobytes (with
numbers ranging from about 3,500 to more than 20,000). The HTTP responses
are analyzed separately for each of these 21 time blocks. To save space, only
graphics for Wednesday afternoon are shown at most points in this paper. This
time block was chosen as being frequently representative, and important differ-
ences for other time blocks are noted in the text. Similar analyses for the other
time blocks can be seen on the web site
http://www.cs.unc.edu/Research/dirt/proj/marron/ExtremalDependence/.
Throughput vs. size analyses, similar to the left hand panel of Figure 1 ap-
pear on the page and in the file UNC2001RS1SPRScombine.pdf, and inverse
throughput vs. duration also both appears on the page and is available in
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UNC2001RS1SPIRT.pdf. Similar scatterplots for the third combination of du-
ration vs. size also appear and can be found in the file UNC2001RS1SPTScombine.pdf.
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Figure 1: Scatterplots of HTTP response throughput vs. size (left) and
inverse throughput vs. duration (right). The “axis hugging” characteristic of
extremal independence is visible on the left (suggesting throughput and size are
independent for large values). Much different behavior exhibited in the right
hand panel suggests strong extremal dependence for throughput and duration.

The left panel of Figure 1 illustrates a situation where potentially the variable
pairs are extremally independent. There are some HTTP responses (circles in
this plot), with a very large size (horizontal coordinate), but not unusually large
throughput (vertical coordinate). There are a number of responses with very
large throughput (vertical coordinate), but not unusually large sizes (horizontal
coordinate). Thus the large values of throughput and size do not tend to occur
together. The data tend to hug the axes and there is a very large empty box
in the upper right corner of the plot. Extremal independence is expected here
because larger files are expected to encounter more network delays, and thus
are not likely to have large throughput. Note this information could be quite
different than what would be contained in, say, a sample correlation coefficient
which represents an average of very many values closer to the mean, which can
be insensitive to a very few relatively large values. Another relatively weak
point of the sample correlation is that it essentially measures how close the
data lie to a slanted line, which is not a useful notion for heavy-tailed bivariate
distributions.
The right hand panel of Figure 1 shows the opposite case. In particular, large

values of inverse throughput (i.e. small values of throughput) and long durations
do tend to happen simultaneously, as expected since inverse throughput = 1 /
rate = time / size. Here the data do not hug the axes, and there is no large
empty box in the upper right corner. Furthermore, the largest observation of
each variable occurs simultaneously. Thus these variables have large values
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which seem quite dependent, which again is expected since lower throughput
(typically caused by long delays) should be associated with longer durations.
While the above two scatterplots suggest expected bivariate dependence

structure, a different visual impression appears in Figure 2. This time the
comparison is duration vs. size of HTTP response. One might expect larger
size to mean longer durations, resulting in a pattern similar to the right panel
of Figure 1 (large values tend to occur simultaneously) but it is difficult to draw
this conclusion from the scatterplot.
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Figure 2: Scatterplot of HTTP response duration vs. size. Note the
surprising “axis hugging” characteristic of extremal independence.

An important goal of this paper is to formalize, to the extent possible, a
statistical basis for these visual and heuristic ideas. The data analysis is ex-
ploratory in nature, and is based on both a visual SiZer analysis and the quan-
titative Extremal Dependence Measure. Classical multivariate extreme value
theory provides a context for development of procedures. However it has as-
sumptions (e.g. multivariate regular variation) that are difficult or impossible to
verify. The procedures developed here are motivated by extreme value theory,
but are intended to be useful in a broader domain.
Our methods are based on two types of non-parametric transformations.

The Inverse Complementary Rank Transform (Huang, 1992; de Haan and de
Ronde, 1998; Einmahl, de Haan and Piterbarg, 2001), is first defined in Section
2, used for analysis in Section 3.1, with details on implementation given in Sec-
tion 4.1. An advantage of this approach is that there is some sound probabilistic
basis for the methodology, even though the asymptotic theory is not completely
worked out. A possible limitation is that this theory is asymptotic in nature,
and relies on the assumption of regular variation. The angular rank method,
based on a different non-parametric transformation, is used for data analysis in
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Section 3.2, with implementation details described in Section 4.2. The advan-
tage of this different transformation is a useful alternative approach to scaling
issues. In Section 4.3 we begin an investigation of the mathematical proper-
ties of this method under classical heavy tailed assumptions but, presently, the
approach is somewhat heuristic and has some unsolved normalization problems.
Although the two approaches are different, they point to the same major

conclusions, which are consistent with those of Maulik, Resnick and Rootzén
(2002), that large values of HTTP response size and throughput tend to be
independent of each other.
While the analyses of this paper have been motivated by a particular prob-

lem in the area of Internet traffic, we believe the methods will also be useful for
tackling other problems. For example in finance, an important issue is whether
large changes in exchange rate returns for different currencies tend to occur
together or separately; see Stărică (1999), Coles, Heffernan and Tawn (1999),
Stărică (2000), Poon, Rockinger and Tawn (2001), Resnick (2003). Environ-
mental statistics, including the study of extrema of sea and wind conditions, is
another area where such methods are likely to be useful, see Ledford and Tawn
(1996, 1997) and de Haan and Ronde (1998).
In Section 2, we provide probability theory needed to develop our statis-

tical methodology. The data analysis demonstrating the claims made here
is described in Section 3. Some methodological details appear in Section 4.
Concluding remarks are in Section 5.

2 Probability Background
In extreme value theory, the concept of asymptotic independence is designed to
make the asymptotic, limiting distribution of extremes a product distribution.
To be more concrete, suppose {(Xn, Yn), n ≥ 1} are iid random vectors in a
domain of attraction of an extreme value distribution. The common distribution
F (x, y) = P [X1 ≤ x, Y1 ≤ y] possesses asymptotic independence if there exist
normalizing constants an > 0, bn ∈ R, cn > 0, dn ∈ R such that as n→∞

P [

Wn
i=1Xi − bn
an

≤ x,
Wn
i=1 Yi − dn
cn

≤ y]→ G1(x)G2(y),

where each Gi(·) is an extreme value distribution. For positive X’s and Y ’s such
as we consider for response sizes, durations and throughputs (rates), we focus
on the heavy tailed case where both X and Y are in a domain of attraction of
a heavy tailed Frechet extreme value distribution.
The background is best understood by first assuming that components of the

vector can be normalized by just n. This is called the standard case so assume
X1 ≥ 0, Y1 ≥ 0 and x > 0, y > 0 and

P [
n_
i=1

Xi
n
≤ x,

n_
i=1

Yi
n
≤ y]→ G∗(x, y). (1)

6



It is convenient to use vector notation x = (x, y). Relation (1) is equivalent to
multivariate regular variation of the multivariate tail function 1−F (x), that is,
for x > 0, x 6= 0

lim
t→∞

1− F (tx)
1− F (t(1, 1)) = − logG∗(x). (2)

A scaling argument shows that

Gt∗(tx) = G∗(x) (3)

and that there is a positive measure ν∗ defined on subsets of the punctured first
quadrant E := [0,∞] \ {0} such that

G∗(x) = exp{−ν∗([0,x]c)}.
The measure ν∗ is fundamental and is called the exponent measure.
Asymptotic independence means G∗ is the product distribution

G∗(x, y) = e−x
−1−y−1 ,

and then ν∗ concentrates on the axes through 0:

ν∗ (x,∞) = 0
for x > 0. This is equivalent to

P [X1 > t, Y1 > t]

P [X1 > t]
→ 0, (4)

which is obtained from (1) by taking logarithms or directly from (2) when one
assumes the limit distribution is a product. (See Resnick (1987), Chapter 5, for
details.) This gives rise to the interpretation, that when the two components
have distributions which are asymptotically equivalent (hence the same scaling
by n works for both components), given one component is large, it is unlikely
the other component is large. Hence a scatterplot of data which is scaled the
same in each component should have points hugging the axes.
The scaling property (3) translates to the measure ν∗ and yields for Borel

subsets of E
ν∗(tB) = t−1ν∗(B), t > 0. (5)

Make a polar coordinate transformation. Pick a norm k · k on R2 and from (5)
we get

ν∗{x ∈ E : kxk > t, xkxk ∈ Λ} =t
−1ν∗{x ∈ E : kxk > 1, xkxk ∈ Λ}

= : t−1S∗(Λ), (6)

where Λ is a subset of the unit sphere

ℵ := {x ∈ E : kxk = 1}.
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The measure S∗ is called the spectral measure. It is customary, but not oblig-
atory, to use the Euclidean L2 norm and to parameterize the unit sphere by
angles in [0,π/2] and to think of S∗ as a distribution on subsets of [0,π/2]. S∗
is always a finite measure and at the expense of writing the limit in (6) with a
constant as ct−1S∗(Λ), we can, and do, assume S∗ is a probability measure.
Note that asymptotic independence means ν∗ has empty interior and con-

centrates on the axes through 0. This translates into S∗ concentrating on {0}
and {π/2}. So density estimates of an S∗, in case of asymptotic independence,
should pile mass at the extremes of the interval [0,π/2] and have little left for
the interior.
Assuming the standard case (1) holds means we are assuming that the mar-

ginal distribution tails of both X1 and Y1 are asymptotically equivalent and
regularly varying with index −1. This is at best a very crude approximation in
practice. See Hernandez-Campos, Marron, Samorodnitsky and Smith (2002),
Resnick (2001, 2003). Thus it is important to consider the general case of heavy
tailed components which is handled by functional transformation. We replace
assumption (1) with

P [
n_
i=1

Xi
b1(n)

≤ x,
n_
i=1

Yi
b2(n)

≤ y]→ G(x, y) = e−ν([0,x]
c), (7)

where
ν([0,x]c) = − logG(x)

is the exponent measure corresponding to G. If F(i)(x), i = 1, 2 represent
the marginal distributions of X1 and Y1 respectively, we can take the scaling
functions bi(n) as the quantile functions

bi(n) =

µ
1

1− F(i)

¶←
(n),

where for a non-decreasing function U , we denote by U← the left continuous
inverse. We then have that (7) holds iff

P [
n_
i=1

b←1 (Xi)
n

≤ x,
n_
i=1

b←2 (Yi)
n

≤ y]→ G∗(x, y), (8)

satisfies the standard case.
Note that for the general case, (X1, Y1) are asymptotically independent iff the

transformed variables for the standard case (b1(X1), b2(Y1)) are asymptotically
independent which translates to

P [b←1 (X1) > t, b←2 (Y1) > t]
P [b←1 (X1) > t]

→ 0. (9)

This emphasizes the importance of having the components on the proper scale
before inquiring about asymptotic independence.
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2.1 Estimation in the Standard Case.

For the standard case, we can estimate ν∗ with the empirical measure

1

k

nX
i=1

²(Xi,Yi)/(n/k)(·)

de Haan and Resnick (1993) where k is sometimes chosen based on a scaling
plot (cf. Stărică (1999, 2000)). The spectral measure S∗ can then be estimated
by

Ŝ∗ =
Pn
i=1 1[ri>n/k]²Θ(·)Pn

i=1 1[ri>n/k]
, (10)

where (ri,Θi) are the polar coordinates of (Xi, Yi). Asymptotic independence
can be tested based on a statistic

v̂n =

Z π/2

0

(θ − π/4)2Ŝ∗(dθ), (11)

which is extreme for the case of asymptotic independence.
Provided n→∞ and k = k(n)→∞ with k/n→ 0, all estimators are con-

sistent. When v̂n is based on polar coordinate angles whose empirical measure
consistently estimates S∗, v̂n consistently estimatesZ π/2

0

(θ − π/4)2)S∗(dθ).

2.2 Estimation in the Non-Standard Case.

For the non-standard case, there are (at least) two ways to proceed.

1. One can, somewhat crudely, hope each marginal tail is asymptotically
Pareto and use a power transformation to bring the Pareto parameter to
1. (See Maulik, Resnick and Rootzén (2002) for an example.) The sample

{(Xα̂1
i , Y

α̂2
i ), i = 1, . . . , n} (12)

where α̂i is the estimated α value for 1 − F(i), i = 1, 2 should be ap-
proximately from the standard case. This has the obvious disadvantage
of requiring estimation of the two α’s which introduces much uncertainty.
This uncertainty can be avoided (at a price) by using the next method.

2. A simple scaling argument, see de Haan and de Ronde (1998), Einmahl,
de Haan and Piterbarg (2001) and Huang (1992), for the tail empirical
measure shows that

ν̃∗ =
1

k

nX
i=1

²( k

R
(X)
i

, k

R
(Y )
i

) (13)
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is a consistent estimator of ν∗ from the standard case, where

R
(X)
i =

nX
l=1

1[Xl≥Xi] = # {j : Xj ≥ Xi} (14)

is the complementary rank of Xi; that is, the number of observations at

least as large as Xi. The ranks R
(X)
i are called “complementary ranks”

because they relate to conventional ranks (the index of the ordered data
starting at the minimum) in the same way as the cumulative distribution
function relates to the complementary cumulative distribution function.
From (13), we can derive an estimator of S∗ and can compute v̂n from
(11) and the EDM (described next).

2.3 The Extremal Dependence Measure.

We can base a simple quantitative measure on v̂n which reflects ideas about
extremal dependence and axis hugging and which is more widely applicable than
the classical context in which v̂n was introduced. We thus define the Extremal
Dependence Measure (EDM), based on a set of angles θ1, ..., θk ∈ [0,π/2] by:

EDM = 1−
µ
4

π

¶2
1

k

kX
i=1

³
θi − π

4

´2
. (15)

EDM is well-defined for any set of angles and will also be used for the angular
rank method used in Sections 3.2 and 4.2. In the context of Subsection 2.1 and
equation (11) we have

EDM = 1− v̂n
(π/4)2

.

Typically, the parameter k will be the number of multivariate exceedences above
a threshold; for example, as in the definition of v̂n, k is the number of observa-
tions whose modulus r is greater than some threshold value. The basis of the
EDM is the mean squared distance from the data angles to π

4 , the center of the
range of possible values, but it is linearly adjusted so that its values correspond
to familiar values for the usual correlation. In particular, when the data points
hug the axes (essentially extremal independence), most of the angles are near 0
or π

2 , so
1
k

Pk
i=1

¡
θi − π

4

¢2 ≈ ¡π4 ¢2, and EDM ≈ 0 (thus working like the usual
notion of correlation). When the data points lie near the 45 degree line, so
1
k

Pk
i=1

¡
θi − π

4

¢2 ≈ 0, and EDM ≈ 1 (again working like conventional corre-
lation because such data are nearly linearly related). Note that, assuming the
axes are made properly “comparable”, this also includes linear dependence with
other slopes, since appropriate rescaling will change that line to the 45 degree
line. One more landmark for interpretation of EDM comes from the fact that
when the data have angles that are nearly uniformly distributed on [0,π/2], a
simple calculation shows that 1

k

Pk
i=1

¡
θi − π

4

¢2 ≈ 1
3

¡
π
4

¢2
, and EDM ≈ 2

3 .
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3 Data Analysis
A serious practical hurdle to applying the concept of extremal dependence is the
requirement, seen from (7), (8) (9), that the two variables be on similar scales,
or transformed to the standard case. Figures 1 and 2 create the suspicion that
comparable scaling is not present since the variables are of far different orders
of magnitude. Furthermore, there are many “large values” in some directions,
and apparently fewer in others.
As outlined in (12), one can proceed by considering power transformations

of the components of the data of the form

(x, y) 7→ (xαx , yαy) . (16)

These will drastically change visual impressions of the type illustrated in Fig-
ure 1, and thus are critical to a precise data based formalization of extremal
dependence. Maulik, Resnick and Rootzén (2002) basically use this approach
and estimate the marginal tail indices, and then renormalize with appropriate
power transformations.
However, estimation of tail parameters is fraught with difficulties. For our

problem of HTTP response behavior (indeed for the same data sets), a strong
case is made by Hernandez-Campos, Marron, Samorodnitsky and Smith (2002)
that the classical tail index, assuming it exists, is not estimable from the data
and that estimates of the tail index vary over a substantial range in various
parts of the tail of the distribution. This casts doubt upon the viability of tail
index power transformation as an analysis tool for HTTP responses.
Two different approaches to this problem are presented in this paper. In

Section 3.1, an extremal dependence data analysis of the HTTP response data
is presented through the use of a nonparametric rank based transformation, the
Inverse Complementary Rank Transformation (ICRT) which avoids the need for
tail index normalization. Section 3.2 gives a parallel extremal dependence analy-
sis of the HTTP response data, using the much different angular rank method.
This uses different nonparametric rank ideas based on polar coordinates. De-
tails of the implementation, illustrated using some toy examples, are developed
in Section 4.2. These two methods are carefully compared, in the context of all
of the HTTP response data sets, in Section 3.3.
The EDM, defined and discussed in Sections 2 (see (15)) and 4.1 is useful for

both our analysis methods in that it is a simple quantitative measure, reflecting
the above ideas about extremal dependence and axis hugging. An interesting
open problem is the development of a null distribution, so that EDM could
be used as the bases of formal statistical hypothesis tests about extremal de-
pendence. In this paper, we will only use EDM for comparison of “levels of
extremal dependence” across cases.

3.1 ICRT Extremal Dependence Analysis

A fundamental part of our extremal dependence analysis is attempted reduction
to the standard case using the ICRT, described in Section 2, equation (15) and
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Section 4.1. The transformed data are represented in polar coordinates and then
thresholded to the subset with largest radius components. Then the distribu-
tion of the angles corresponding to the exceedences is studied for indications of
extremal independence. In Figures 3-5, the data are thresholded so that only
the largest 2000 remain, but it is useful to look at a range of different thresh-
olds. A number of other thresholds are considered, in the context of all of the
HTTP response data sets (all 21 four hour time blocks), in Section 3.3. There
it is seen that while the threshold can have a substantial effect, general lessons
and comparisons are fairly insensitive to the precise choices. The threshold of
2000 is used here, because it provides interesting contrasts between the extremal
dependence properties of the variables under consideration. Alternatively, the
scaling technique of Stărică (1999) could be used to help decide on a threshold.
Figure 3 shows this analysis for the HTTP response throughput vs. size.

The raw data are shown in the left scatterplot in Figure 1, which suggested
extremal independence in this case, as intuitively expected.
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Figure 3: ICRT extremal dependence analysis of throughput vs. size for
HTTP response data. Note the apparent extremal independence.

The top panel of Figure 3 shows the distribution of the angles for the top
(with respect to the radius r) 2000 HTTP responses, in two ways. First there
is a “jitter plot” (see Tukey and Tukey (1990) or pages 121-122 of Cleveland
(1993)), shown as green dots, where the horizontal coordinate of each dot rep-
resents the angle, and a random vertical coordinate is used for visual separation
of the dots. Second there is a family of smoothed histograms, shown in blue.
The differing blue curves correspond to different histogram “binwidths”, repre-
senting a range of different levels of smoothing, from grossly oversmoothed, to
clearly undersmoothed. The version of “smoothed histogram” used here is the
kernel density estimate, see Wand and Jones (1995) for a good introduction.
Finally note that angles are shown on the scale of θ× (2/π), because the range
of [0, 1] is more easily interpreted than the range of [0,π/2] ≈ [0, 1.57].
Both the green jitter plot, and the family of blue smooth histograms show
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that the distribution of angles piles mass near the ends of the interval as is char-
acteristic of extremal independence. While evidence of extremal independence
is strong in this case, in other situations, it is not. The bottom panel of Figure
3 is a SiZer map (introduced by Chaudhuri and Marron (1998), but see also the
web site:
http://www.stat.unc.edu/faculty/marron/DataAnalyses/SiZer_Intro.html
for a useful introduction), which indicates which distributional features that are
observable in the smooth histograms represent important underlying structure,
and which are driven by spurious sampling variability. Each row of the SiZer
map corresponds to one of the blue curves (representing a view of the data at a
single “scale”, i.e. smooth histogram with different binwidth). The horizontal
axis is the same as in the top panel, thus representing the angle θ 2π . Significance
of structure is assessed via confidence intervals for the slope of the corresponding
blue curve. When the confidence interval is completely above 0, the slope is
significantly positive, and the color blue is used. In the bottom panel of Figure
3, the large amount of blue on the right shows that the large upward slope on
that side is statistically significant. When the confidence interval is completely
below 0, the slope is significantly negative, and the color red is used. In the
bottom panel of Figure 3, the large amount of red on the left side reflects the
general downward trend in those regions. When the confidence interval con-
tains 0, it is unclear whether the slope is up or down, and the intermediate color
of purple is used. The purple regions in Figure 3 appear where the blue curves
are quite flat, and where they wiggle in apparently random ways (the purple
in the SiZer map confirms that those small scale wiggles are indeed sampling
fluctuations). The final SiZer color is gray, which is used in regions where the
data are too sparse (this happens when the histogram binwidth is so small there
is not enough data in each bin) for reliable statistical inference of the type done
by SiZer.
While the visual analysis of Figure 3 presents a strong case for extremal

independence, it has the possible drawback that one must understand the full
distribution of angles (which is time consuming). For some purposes, for ex-
ample analyzing many such data sets as done in Section 3.3, it is convenient to
have a simple numerical measure. We suggest the EDM , defined in (15), for
this purpose. The value EDM = 0.23 is shown in the top panel of Figure 3,
and will be used for comparison below.
Figure 4 shows the same analysis for the HTTP response inverse throughput

vs. duration. These raw data are shown in the right scatterplot in Figure 1,
where it was seen that large values tended to appear simultaneously, as expected.
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Figure 4: ICRT extremal dependence analysis of inverse throughput vs.
duration for HTTP response data. Note that large values occur

simultaneously.

The distribution of angles shown in Figure 4 is far different from that of
Figure 3. The green dots of the jitter plot appear roughly homogeneous (corre-
sponding to a uniform density). The family of blue smoothed histograms gives
a more precise indication of the distributional shape showing a distinct peak
near the angle θ× (2/π) ≈ 0.75, and perhaps an important valley near the angle
θ × (2/π) ≈ 0.3. The smaller binwidths suggest a number of other possible
peaks and valleys. Here the SiZer map in the bottom panel is very useful for
understanding which features are statistically significant, in particular revealing
that the indicated big peak and big valley are important, but most of the other
wiggles cannot be distinguished from the background sampling variability, ex-
cept for a few appearing in the lower right. The significant peak in the angle
distribution corresponds to more than usual data points lying near a particular
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line through the origin in the right panel in Figure 1.
The main conclusion from Figure 4 is that there is clearly no tendency for the

angles to pile up at the ends of the interval, i.e. for the scatterplot data to hug
the axes. This is reflected numerically by EDM = 0.69. This value is larger
than EDM = 2/3, which corresponds to the uniform distribution, suggesting
“less piling at the ends than for the uniform”.
Figure 5 shows this same analysis for the HTTP response duration vs. size.

Recall this was the surprising case, illustrated in Figure 2, where it was seen
that the variables appear to exhibit some extremal independence, despite the
dependence one might expect.
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Figure 5: ICRT extremal dependence analysis of duration vs. size for HTTP
response data. Note the tendency towards extremal independence.

The amount of extremal dependence exhibited in Figure 5 is between Figure
3 (extremal independent) and Figure 4 (extremal dependent), in terms of angles
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piling up at the end points. While the blue curves appear to pile up somewhat
near the endpoints, the piles are now more towards the middle of the distribu-
tion (see the SiZer blue at the left end, and red at the right end). This picture
is less conclusive than seen in Figure 3, although it is tempting to identify a
trend towards a “bathtub shape”, i.e. a mild tendency towards extremal inde-
pendence. A related impression comes from the value of EDM = 0.51, which
is smaller than the uniform reference value of EDM = 2/3. This conclusion is
confirmed from a different viewpoint in Section 3.2.

3.2 Angular Rank Extremal Dependence Analysis

The angular rank method also starts with transformation to make the axes
(marginal distributions) comparable. Then, there is a transformation based on
“angular equal spacing”, and “end equal rescaling” ideas, described in Section
4.2. Next the analysis proceeds by thresholding the largest values, and using
SiZer on the distribution of angles, as in the previous section. Again the
largest 2000 values are kept for the analysis. These results are also sensitive to
this choice of threshold, and as in Section 3.1, 2000 gave interesting contrasts
between the variables. Again, more thresholds are considered, in the context
of all of the HTTP response data sets, in Section 3.3.
Figure 6 shows the angular rank analysis for throughput vs. size. Recall

the scatterplot on the left of Figure 1, and the ICRT analysis of Figure 3 both
indicated extremal independence of these variables.
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Figure 6: Angular rank extremal dependence analysis of throughput vs. size
for HTTP response data. Note the very strong extremal independence.

Figure 6 provides confirmation of the earlier impression of extremal indepen-
dence, indicating a bathtub shaped distribution of the angles. This is verified
by the SiZer map, and by the relatively small value of EDM = 0.29.
Figure 7 shows the angular rank analysis for inverse throughput vs. duration.

Recall the scatterplot on the right of Figure 1, and the ICRT analysis of Figure
4 both indicated extremal dependence of these variables, i.e. a tendency for
variables to be large simultaneously.
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Figure 7: Angular rank extremal dependence analysis of inverse throughput
vs. duration for HTTP response data. Note the extremal dependence.

Figure 7 shows an angular distribution with some large and statistically
significant peaks, near θ × (π/2) = 0.42 and 0.73. These indicate that the
largest values of inverse throughput tend to be just a few multiples of duration
time. This time the EDM = 0.67, which is close to the value of 2/3 that would
appear for the uniform. This is caused by the chance location of the peaks,
and show that EDM alone has limited ability to distinguish between different
forms of extremal dependence.
Note, Figure 7 indicates density plots which seem to indicate that S∗ is dis-

crete with several atoms. In such cases, a scatter plot of thresholded vectors,
culled from the sample by dint of having large radius vectors, should show ex-
ceedences tending to follow rays at angles corresponding to the peaks in Figure
7. Such an S∗ could be realized as a mixture model. The extreme value back-
ground is given on page 276 of Resnick (1987) and models exhibiting this type
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of behavior can be realized by taking p (=number of atoms of S∗) max-linear
combinations of the form

p_
j=1

aj(pjXj ∨ qjXj)

where X1, . . . ,Xp are iid Frechet random variables and for 1 ≤ j ≤ p we have
pj + qj = 1.
Figure 8 shows the angular rank analysis for duration vs. size. Recall from

the ICRT analysis that this case was between the two previous cases in terms
of extent of extremal dependence.
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Figure 8: Angular rank extremal dependence analysis of duration vs. size for
HTTP response data. Note the slight tendency towards extremal independence.

Once again, the conclusion is between that of Figures 6 and 7. There is
an impression of a bathtub shape (indicating extremal independence) which is
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confirmed by large blue and red regions in the SiZer map. But there is also
a statistically significant, although rather small spike near θ × (π/2) = 0.83
(indicating that duration is occasionally a particular multiple of size) of the
type in Figure 7. This suggests a complicated distributional structure, which is
a mixture of components having both extremal independence and dependence.
The value of EDM = 0.56 is also between that for Figures 6 and 7, and again
is similar to that from Figure 5.

3.3 Comparison of Methods

In Sections 3.1 and 3.2, the ICRT and angular rank methods of extremal de-
pendence were studied in the context of a single real data set, using a single
threshold. Here we further compare these methods, using a wider range of data
sets and thresholds.
First, we consider other values of the threshold, that was set at 2000 in Sec-

tions 3.1 and 3.2. Movie versions of Figure 3-8, showing a range of thresholds,
from 100 to 2000, are available on the same web site:
http://www.cs.unc.edu/Research/dirt/proj/marron/ExtremalDependence/.
We have also done similar analyses, for all 7 days of the week, and all 3

times of day. The resulting values of EDM are summarized in the spreadsheet
summary_100K.xls, which is available from the same web site. Figure 9 shows a
graphical display of these values, using a parallel coordinates plot, see Inselberg
(1985). The horizontal axis in Figure 9 is the threshold level. The vertical
axis is the value of the EDM, at that threshold. Each curve represents a
single date and time. Colors are used to code the pairs of variables, with the
comparisons of: Throughput (Rate) vs. Size shown as red, Duration vs. Size
shown as blue, and Inverse Throughput vs. Duration shown as green. Finally,
because weekends were noticeably different from weekdays, weekdays are shown
as dashed curves, while weekends are solid. Results based on the ICRT method
appear in the top panel, and those using the angular rank method appear in
the bottom.
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Figure 9: Parallel coordinate plot summaries of EDM, for different
thresholds (horizontal axis), different time periods (different curves, weekdays
are dashed weekends are solid), different variable pair (T vs. S in red, D vs. S
in blue, and IT vs. D in green), and different transformations (ICRT in the

top panel, angular rank in the bottom panel).

Figure 9 shows, for both methods, the main ideas from Sections 3.1 and 3.2
hold quite generally. In particular, Inverse Throughput vs. Duration (green)
shows clearly the most dependence among the large values, while Throughput
vs. Size (red) is the closest to independent, with Duration vs. Size (blue) lying
in between.
Figure 9 also allows other types of insights. First note that the ICRT values

of EDM steadily increase with the threshold. For the angular rank method, the
EDM values are rather constant, except for Throughput vs. Size (red). This
gives an impression that the angular rank values of EDM are less threshold
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dependent than for the ICRT.
Also observe that on the weekends (shown as the solid curves), the values of

EDM are generally larger than on weekdays. For Duration vs. Size (blue) this is
expected, because on weekends traffic is lighter resulting in less congestion and
packet loss, so Duration is more likely to be a multiple of size. For Throughput
vs. Size (red) this also makes sense, because many large recreational files (music,
movies, etc.) are likely being downloaded, and throughputs should be relatively
fast because of lack of congestion.

4 Methodological Details
This section gives methodological details for the ICRT method, used in Section
3.1, and for the angular rank method, used in Section 3.2.

4.1 Inverse Complementary Rank Transform

The key to making axes comparable, before studying the polar coordinates in
the extremal independence analysis of Section 3.1, is the ICRT (Inverse Com-
plementary Rank Transformation) defined in Section 2. This transformation is
based on the notion of complementary ranks, as defined at (14).
The ICRT essentially uses the complementary ranks for both marginal distri-

butions simultaneously, but in a way that preserves the critical bivariate struc-
ture. In particular, map the set of pairs

{(Xi, Yi) : i = 1, . . . , n}

to the pairs n³
R
(X)

i , R
(Y )

i

´
: i = 1, ..., n

o
.

That is, we replace each data value by its corresponding complementary rank.
This bivariate complementary rank transformation is essentially the “Copula
Transformation” that is used in the area of rank based non-parametric statistics
to study dependence between variables in a distribution free manner.
While the Copula indeed maintains the dependence structure in the data,

for purposes of studying extremal dependence it has the serious drawback of
giving essentially uniform marginal distributions (ruling out strong potential
axis hugging in the scatterplot). The ICRT remedies that, essentially by turning
the uniform marginals into Pareto marginals, by working with the inverse of

the R
(X)

i . In particular the data are mapped ton³
1/R

(X)
i , 1/R

(Y )
i

´
: i = 1, ..., n

o
.

These are the raw data used in the ICRT extremal dependence analyses of
Section 3.1.
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4.2 Angular Rank Method

As opposed to the ICRT analysis which applies a non-parametric transforma-
tion to the marginal distributions, the angular rank method applies the non-
parametric transformation directly to the angles θ.
The Angular Probability Integral Transform (APIT), applied to the full data

set, makes the angles equally spaced on [0,π/2]. One replaces the angles by
their ranks (scaled to fill the interval [0,π/2]). More precisely, given a set of
angles, θ1, ..., θn, define the rank of θi to be the number of angles in the set that
are less than or equal to θi:

R
(θ)
i =

nX
j=1

1[θj≤θi] = # {j : θj ≤ θi} . (17)

Then to make the data equally spaced on [0,π/2], the set of angles is replaced
by eθ1, ...,eθn where eθi = ÃR(θ)i − 1/2

n

!
π

2
.

After the full data are transformed by the APIT, the large values are again
considered (by thresholding on the radius r), so piling up of the angles at the
endpoints, with statistical significance assessed by SiZer, provides a clearly in-
terpretable sense in which large values tend to occur together or separately.
This time the comparison is done with non-thresholded angles in contrast to
comparison with the uniform distribution in Section 3.1. The main ideas are
illustrated in Figure 10, in the context of n = 50, 000 simulated data points
from the independent bivariate Pareto (1.5) distribution.
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Figure 10: Simulated independent Pareto (1.5) data (shown using x symbols
in the upper left), illustrating the Angular Probability Integral Transformation
(thick dots in the upper left), and effect of large value thresholding (lower

right).

A scatterplot of the data is shown as x symbols in the upper left panel. The
corresponding angular distribution is shown in the upper right panel, as both
the jitter plot, and also the family of smooth histograms. This distribution has
a distinct peaked shape, showing that the scatterplot does not give much insight
into the angular distribution (e.g. one might expect more of a bathtub shaped
distribution). The angular rank visualization investigates specifically whether
larger values are dependent by first transforming the data from cartesian to polar
coordinates and then replacing angles by their ranks resulting in equally spaced
angles, using the APIT. After transforming back to cartesian coordinates, this
is shown as dots in the upper left, and the angles themselves and corresponding
estimated angular density shown in the lower left. The dots in the upper left
tend to follow very closely the x symbols of the raw data (in particular each dot
lies virtually at the center of the correponding x), suggesting that the APIT does
not make large changes in the data for this example. This is because the angular
distribution shown in the top right is not so far from the uniform distribution.
Of course the APIT data in the lower left look uniformly distributed.
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The angular rank method next focusses on large values, by considering radii
r, and restricting attention to only the largest values. In the lower right of Figure
10 the data have been thresholded to the largest 500. The lower right shows
that the independent Pareto exhibits strong extremal independence, because the
large value thresholded angular distribution is once again bathtub shaped, i.e.
the scatterplot data are “axis hugging”. This viewpoint is a simple and natural
way of studying whether the larger values are associated with each other, but
it steps outside the classical ideas of asymptotic independence, because of the
APIT, hence the different name.
SiZer maps are not included in Figure 10 to save space, and because they

show only the expected results for this simulated example. As seen in Section
3.1, SiZer maps are useful for EDM, and also very useful for the angular rank
method because the APIT provides a null uniform distribution, which will show
up entirely purple in the SiZer map. Thus, structure which is found in the SiZer
map has immediate implications in terms of extremal dependence. As with the
ICRT extremal dependence, it remains critical to make the axes comparable
before taking polar coordinates. Figure 11 provides an investigation of this
issue, for theWednesday afternoon UNC response size data set considered above.
This time the variables are taken to be duration time vs. size, as studied in
Figures 2, 5 and 8 above. The various parts of Figure 11 show the results of
experimentation, using the simple multiplicative rescaling (18), of the effect of
various choices of the scales sx and sy. in the scale transformation

(x/sx, y/sy) . (18)

In each case the results of a full extremal dependence analysis are shown. This
means that after rescaling, the APIT is applied, then the data are thresholded
to the largest 200, and finally, the angular distribution is shown. Again the
SiZer analysis is not shown to save space.
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Figure 11: Angular rank distributions, for various rescalings: simple median
(upper left), upper tail quantile (upper right), Root Median Slope (lower left),

upper tail Root Median Slope (lower right)

While median rescaling, shown at the upper left of Figure 11, is a simple
approach to making axes comparable, it is not helpful for the EDM, because
the angles tend to pile up on the right side. This means that in the original
scatterplot, there is a very strong tendency for the large values to hug the vertical
axis, with very few near the horizontal axis. This scale is not useful for studying
extremal dependence, because only large y values are visible in the scatterplot,
yet it is the interaction between the large y values and the large x values that
is being studied. While this point is clear in this case, precise quantification
can be done by computing the mean of the 200 angles shown. This is shown in
each plot as the vertical magenta line.
A simple solution is to recognize that all data appear on the right, because

the y distribution has a much greater percentage of values that are very large
in comparison to the median, which suggests that a more reliable result can be
obtained by replacing median rescaling by a larger quantile rescaling. Since
only the largest 200 data points are ultimately considered, some improvement

can be expected from replacing the medians R
(x)
n/2 and R

(y)
n/2, by quantiles that
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are “200 from the end”, i.e. R
(x)

200 and R
(y)

200. The result of the rescalings

sx = R
(x)
200 and sy = R

(y)
200, is shown in the top right panel of Figure 11. There

is some improvement over median rescaling, in that the blue spike on the right
is thinner, there are more green dots on the left, and the mean angle has moved
towards the center. However, the result is still not adequate for useful extremal
dependence analysis, because again the angles only pile up at one end.
While neither of these marginal quantiles (nor others that were tried) solved

this problem, there must be some transformation that will do so. For example,
there should be some scale transformation, of the form (18), that will move the
mean angle shown by the vertical lines in Figure 11 to the center.
Another approach is the Median Slope idea. This is a methodology for

choosing “aspect ratio”, see Cleveland (1993). The aspect ratio in a conven-
tional two dimensional graphic (such as the scatterplots in Figures 1 and 2)
quantifies the relationship between the scales of the x and y axes. When curves
are displayed, typically aspect ratios are chosen to “maximally utilize graph
space”, i.e. so that extreme x and y coordinates of the curve fit within the
allowed area. However, this view can provide a quite deceptive impression of
the data. The Median Slope approach to this problem is to choose the aspect
ratio so the median slope of the line segments (the microscopic piecewise lines
which make up the apparently smooth curves used in computer graphics) is 1.
This same idea is applied in the present context by considering the line segment
that connects each data point (x, y) to the origin (0, 0). These line segments
have slopes x/y. For a given set of data (x1, y1) , .., (xn, yn), define the Root
Median Slope:

RMS =

s
median
i=1,...,n

µ
xi
yi

¶
.

When the data are transformed using the scale transformation (18), with

sx = RMS, sy = 1/RMS, (19)

note that

median
i=1,...,n

µ
xi/sx
yi/sy

¶
= median

i=1,...,n

µ
xi
yi

¶µ
sy
sx

¶
= RMS2RMS−2 = 1,

i.e. the median slope is one.
The extremal dependence analysis, that results from the RMS scale trans-

formation, using (19) in (18), is shown in the lower left panel of Figure 11.
This result is disappointing, being no better than the median rescaling directly
above. The reason is the same as discussed above: the median behavior is
driven by the center of the distribution, but the extremal dependence analysis
feels only the large values.
This suggests applying the extremal dependence analysis to only angles cor-

responding to larger values. The challenge here is to define “larger”. The polar
coordinate representation won’t work, because that depends on first finding a
suitable scaling. Several approaches were tried, with the most success coming

28



from taking the data points with the largest 100 x coordinates, together with the
data points with the largest 100 y coordinates (with duplicates counted twice).
The extremal dependence analysis resulting from this rescaling is shown in the
lower right panel of Figure 11. Now the result is quite impressive, with the
blue smoothed histograms sloping up at both ends, and the mean angle being
very close to the center.
While this rescaling gives good performance for these data, the performance

was unfortunately much worse in other cases, including the comparisons of
throughput vs. size and inverse throughput vs. duration. This suggests that
no single rescaling will work uniformly well in all cases. However, as noted
above, there is a rescaling that will work well in the sense of moving the mean
angle to the center, so we propose finding this by an iterative approach.
To understand our iterative approach to rescaling, consider the rescalings sx

and sy to be free parameters to be chosen later. These are initially taken to
be the best rescaling above, and then will be adjusted to achieve “balance” of
the thresholded set of angles. For a given choice of sx and sy, the data are
transformed to polar coordinates. Next the APIT is applied, and finally the
data are thresholded in terms of the radius, keeping only the angles with largest
corresponding radii.
The initial rescaling was very effective when these angles hugged both axes to

about the same degree, i.e. if the thresholded angles “pile up evenly” on the right
and the left of the interval [0,π/2]. As noted above, a simple notion of “piling
up evenly” is that the sample mean is equal to the angular interval centerpoint
of π/4. The next step is iterative improvement of the initial rescaling, with the
goal of moving the sample mean θ̄ of the thresholded angles towards π/4. This
is done by adjusting the rescaling to

RMS ×
q
tan θ,

where θ is the mean angle. The iterative procedure was ended either when¯̄
θ − π

4

¯̄
< 0.01 or else when 100 steps had been taken. The convergence was

usually quite fast, but there were a few cases where the convergence was slow,
and some where there seemed to be “oscillation” between local solutions, with-
out convergence. However, overall this gave reasonable answers, as shown in
the extremal dependence analyses in Section 3.2.
The lower right part of Figure 11, Figures 6 and Figure 8 suggest that while

a reasonable job of “putting the axes on the same scale” is done by the iterative
end equal rescaling, some improvement may be possible. For example the left
endpoint pile in the lower right of Figure 11 is “short and wide”, while the right
endpoint pile is “tall and narrow”. This asymmetry is somewhat unpleasant,
and cannot be improved by modifying the multiplicative rescaling (18), because
that will instead only shift the angular mean θ. A non linear transformation
of the axes is needed to handle this effect, and the power transformation (16),
seems ideal for this. An interesting open problem is to find a method (perhaps
iterative?) for choosing the powers αx and αy, to make the thresholded APIT
distributions “more symmetric” in some meaningful sense.
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It is tempting to combine the ICRT, that was the major basis of the extremal
dependence analysis done in Sections 3.1 and 4.1, with the angular rank based
analysis of Sections 3.2 and 4.2. This can be done by applying the angular
rank analysis to the ICRT data. This was tried, but the answer was not
particularly useful because all three pairs of variables then gave strong bathtub
shaped distributions, i.e. they all showed extremal independence. The views
actually shown in this paper seem to be more useful, because they give a more
clear view of “which variables exhibit relatively more extremal dependence”.

4.3 Angular Rank Method Asymptotics

The probabilistic background surveyed in Section 2, used to offer some justifica-
tion of the ICRT method, can also be used to understand large sample properties
of the angular rank method in the standard case when (1) or (2) hold.
Let {(Xi, Yi), 1 ≤ i ≤ n} be the original data in Cartesian coordinates, whose

common joint distribution satisfies (1) or (2). Transform the data to polar
coordinates {(ri,Θi), 1 ≤ i ≤ n} and (2) is equivalent to (see, for example,
Resnick (1987); Resnick (2002); Resnick (2003); Basrak, Davis and Mikosch
(2000); Basrak (2000)) existence of b(n) ↑ ∞ such that

nP [
¡ r1
b(n)

,Θ1
¢ ∈ ·] v→ να × S∗, (20)

vaguely on (0,∞]× [0,π/2], where να is the measure with tail

να(w,∞] = w−α, w > 0,

and S∗ is a probability measure on [0,π/2]. It is also the case that for k =
k(n)→∞ such that k/n→ 0

1

k

nX
i=1

²¡ ri
b(n/k) ,Θi

¢ ⇒ να × S∗, (21)

weakly, in the space of Radon measures on (0,∞]× [0,π/2].
Now we create the ranks of the Θ’s. For the n angles Θ1, . . . ,Θn, write the

order statistics in increasing order as

Θ(1:n) ≤ · · · ≤ Θ(n:n)

and define the rank of Θi as at (17), so that again R
(Θ)
i is the number of Θ’s

which are no bigger than Θi. It follows that for 1 ≤ ` ≤ n

R
(Θ)
i ≤ ` iff Θi ≤ Θ(`:n). (22)

Having ranked the angles, we now take the subset corresponding to the
original data which exceeds a threshold according to radius vectors of the data.
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We retain the angle ranks with indices i corresponding to ri > b(nk ). The
empirical measure of these ranks is

T̂n(·) =
Pn

i=1 1[ri>b(n/k)]²R(Θ)
i /nPn

i=1 1[ri>b(n/k)]

=

Pn
i=1 ²¡ ri

b(n/k) ,
R
(Θ)
i
n

¢¡(1,∞]× ·¢Pn
i=1 ²¡ ri

b(n/k) ,
R
(Θ)
i
n

¢¡(1,∞]× [0, 1]¢ . (23)

For the empirical measure of the ranks, we have the following result.

Proposition 1 Suppose the joint distribution F of the original data {(Xi, Yi), 1 ≤
i ≤ n} satisfies (1) (or equivalently (2) or (20)) so that the standard case as-
sumptions are in force. Define for 0 ≤ θ ≤ π/2

H(θ) = P [Θ1 ≤ θ] = P [arctan

µ
Y1
X1

¶
≤ θ]

for the marginal distribution of Θ1. Then

T̂n ⇒ S∗ ◦H← (24)

weakly in the space of Radon measures on [0, 1]. Here H← is the left continuous
inverse of H.

Remark. Thus, the empirical measure of ranked angles, after pruning the ranks
by thresholding, approximates S∗ ◦H←. In cases where (X1, Y1) has a positive
density on R2+, H is continuous and strictly increasing and thus H← : [0, 1] 7→
[0,π/2] is also continuous and strictly increasing. If asymptotic independence
holds so that S∗ is the two-point distribution concentrating on {0,π/2}, then
S∗ ◦ H← is the two-point distribution concentrating on {0, 1}. In such cases,
even in the absence of knowledge of H, T̂n should be effective in discerning
extremal independence.

Proof. For 0 ≤ t ≤ 1

T̂n([0, t]) =

Pn
i=1 ²¡ ri

b(n/k)
,
R
(Θ)
i
n

¢¡(1,∞]× [0, t]¢Pn
i=1 ²¡ ri

b(n/k) ,
R
(Θ)
i
n

¢¡(1,∞]× [0, 1]¢ .
Now

R(Θi)

n
≤ t iff Θi ≤ Θ([nt],n).

As a process, {Θ([nt],n), 0 ≤ t ≤ 1} is the inverse of the empirical cdf of the
Θ’s. Since the empirical cdf of the Θ’s converges almost surely to H weakly, the
same is true of the inverses and hence almost surely

Θ([n·],n) → H←(·)
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at points of continuity of the limit. We have, therefore,

T̂n ([0, t]) =

1
k

Pn
i=1 ²

¡
ri

b(n/k)
,Θi

¢¡(1,∞]× [0,Θ([nt]:n)]¢
1
k

Pn
i=1 ²

¡
ri

b(n/k) ,Θi

¢¡(1,∞]× [0,π/2]¢ ⇒ S∗◦H←(t)/1 = S∗◦H←(t),

provided t is a continuity point of H←.

5 Concluding Remarks
These results should encourage additional measurements to confirm the obser-
vations at a variety of network locations (access, edge, and backbone links), and
to determine the range of file sizes for which the independence result holds.
Another interesting issue is that the opposition of our results with those of

Zhang, Breslau, Paxson and Shenker (2002). In an upcoming paper, we will
show that this is driven by biases created by choice of variable on which to
threshold, that have been used to select “large values”, and will conclude that
the methods in the present paper are sensible approaches.
The angular rank method seems interesting and promising and we intend

to continue investigating mathematical bases for the method. In particular, we
would like to understand under what conditions extremal dependence analysis
based on either the ICRT or the angular rank method give the same conclusions
and whether it is possible to conclude that one method is superior to the other.
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