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Abstract

Duration distributions for internet connections are Þt using a novel vi-
sualization. While no standard distribution is exactly right, both heavy
tail Pareto and light tail log-normal distributions appear sensible in the
tails. As noted by Downey (2000), goodness of Þt of the log-normal raises
interesting questions about the widely accepted view of internet traffic,
that only heavy tailed duration distributions lead to long range depen-
dence. Some nonstandard mathematical analysis reveals that both tail
distributions are actually consistent with long range dependence, because
with appropriate choice of parameters a system with log-normal durations
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can have correlation consistent with long range dependence over a wide
range of lags.

1 Introduction
A number of studies of internet traffic suggest that internet ßows (transfers of
data from one computer to another one) often have heavy tailed duration dis-
tributions, and that the aggregated traffic (e.g. the collection of all data ßowing
through a particular point on the internet) exhibits long range dependence, see
e.g. Garrett and Willinger (1994) and Paxson and Floyd (1995). An elegant
mathematical theory, see e.g. Mandelbrot (1969), Cox (1984), Taqqu and Levy
(1986) and Heath, Resnick and Samorodnitsky (1998), provides a convincing
connection between these phenomena.
A graphical illustration of this behavior is given in Figure 1, where IP (In-

ternet Packet) ßows are represented as horizontal lines. The heights of the
lines are random, which allows simple visual separation. Details of the data are
given below, but a striking feature is that the lengths of the lines include many
very short ßows, and also some very long ßows.
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Figure 1: Display of real IP ßows, showing �mice� (many short connections)
and �elephants� (few long connections), with random vertical �jitter�, for

convenient visualization.

The data shown in Figure 1 were gathered from packet headers, during a
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four hour period on a Sunday morning in 2000, at the main internet link of
the University of North Carolina, Chapel Hill. This time period was chosen
as being �off peak�, having relatively light traffic. An IP �ßow� is deÞned
here as the time period between the Þrst and last packets transferred between
a given pair of IP sending and receiving addresses. For more details on the
data collection and processing methods, see Smith, Hernandez, Jeffay and Ott
(2001).
Current popular terminology for the phenomenon of simultaneous occurrence

of unusually short and long ßows is �mice and elephants�. Figure 2 shows a
simulation which demonstrates that this duration distribution is far different
from the exponential durations that lie at the heart of standard queueing the-
ory. In Figure 2, the ßow lengths are randomly drawn from the exponential
distribution with the same mean ßow length as in Figure 1 (mean = 106 sec.),
and the start times are the same as those in Figure 1 . Note that there are far
fewer very small ßows (mice), and also essentially no very large ßows (elephants)
in Figure 2, with most of the ßows being �medium sized�, in stark contrast to
Figure 1. This makes it visually clear that the exponential distribution is a
very poor approximation to the duration distribution.
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Figure 2: Display of simulated IP ßows, with same start times, and same
mean duration as in Figure A. Here exponential durations are used, which

results in fewer very large, and also fewer very small ßows.

The different duration distributions shown in Figures 1 and 2 lead to far
different behavior when the ßows are aggregated into a traffic stream, looking
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either at the sequences of packet time stamps, or else at binned aggregates of
either packet counts or packet sizes. In particular, the relatively homogeneous
ßow lengths in Figure 2 lead to �short range dependent� aggregrations, i.e.
autocorrelations which decay exponentially. It may not be surprising that the
longer and shorter durations visible in Figure 1 can lead to a different type of
dependence structure. In the simplest version of this, see Section 7 of Cox
(1984), an inÞnite variance (i.e. second moment) of the duration distribution
implies �long range dependence� in the sense that the autocorrelation decays at
a polynomial rate. There are a number of variations on this theme, where the
moment condition on the duration distribution is replaced by quantities such as
tail indices, and where long range dependence is measured in other ways, such
as the behavior of the spectral density near 0. See Chapter 4 of Beran (1994)
for discussion of various relations among these.
As noted above, empirical observation of heavy tailed durations and long

range dependence, coupled with elegant asymptotic theory connecting them
together, suggest that there is a compelling case that we have a deep under-
standing of internet traffic data. However, Downey (2000) has recently called
the depth of this �understanding� into question by some interesting empirical
work, which suggests that the log-normal distribution may be more appropriate
than classic heavy tailed distributions such as the Pareto. Downey�s work is
somewhat different from the above, because he analyzes distributions of com-
puter Þle sizes, which may be somewhat different from IP ßows as considered
above. However, Downey provides further backing of the log-normal distribu-
tion by suggesting an intuitive mechanism which results in log-normal Þle size
distributions. Since the same intuitive mechanism is sensible as well for size
distributions of IP ßows, the log-normal should be viewed as a serious candidate.
At Þrst glance this casts serious doubt on the above empirical plus theoretical
view. The reason is that the log-normal has all moments Þnite, thus failing to
have the apparently required inÞnite second moment. But careful considera-
tion reveals a logical gap: the existing theory uses only one type of asymptotic
analysis. It is possible that a Þnite second moment is consistent with a slow
decay of autocorrelations over a particular long range of lags. An important
goal of this paper is to Þll in this gap by showing that log-normal distributions
and long range dependence are consistent with each other, in this sense.
First an empirical study of duration distributions (more relevant than the

Þle size distributions studied by Downey) is given in Section 2. An important
feature of the analysis is a novel visualization, which improves previous distrib-
utional analyses by providing insight into the level of sampling variability. The
analysis shows that neither the Pareto, nor the log-normal provides a partic-
ularly good Þt. Yet both could be regarded as �acceptable approximations�.
The Pareto which gives this Þt has shape parameter between 1 and 2 (i.e. the
Þrst moment is Þnite, but the second moment is inÞnite) So which is �right�?
Is there a �heavy tailed Pareto� leading to long range dependence, or is there a
�light tailed log-normal� leading to short range dependence?
Second a theoretical analysis is given in Section 3, which shows that these two

different approximations need not lead to divergent conclusions. In particular,
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it is seen that there are sequences of log-normal distributions which can yield
long range dependence in the sense of polynomially decreasing autocorrelations.
The argument is asymptotic in nature, however it should be viewed as saying,
in accordance with the above, that a slow decay of correlations is observed over
a certain wide range.

2 Fitting of duration distributions
The data set in Figure 1 is not ideal for studying tail behavior of duration dis-
tributions because of boundary effects created by the limited time span (about
40 minutes) considered there. In particular, too many ßows last for essentially
the full time span. Hence, we replace the duration variable by the surrogate
variable of ßow size. This makes some sense because larger Þles do require
more time to transfer. However, we acknowledge that the approximation is
crude. Thus, a set of n = 734, 814 HTTP response sizes, gathered at the UNC
main link in 1998 is considered in this section, entailing that �duration� is now
measured in terms of Þle size, instead of time required for the transfer, as in
Figure 1.. Here �ßow� also has a somewhat different meaning because these are
only the Þles that are transferred while web browsing, as opposed to all types
of data, as considered in Figure 1.
Figure 3 shows a Pareto Q-Q plot analysis of the response size data. This

is a graphical technique for assessing the goodness of Þt of a probability distri-
bution to data. See e.g. Fisher (1983) for an overview of related techniques.
Here the data quantiles (i.e. sorted data values) are plotted as a function of the
corresponding theoretical quantiles (the theoretical inverse cumulative distrib-
ution function, evaluated at the points 1/(2n), 3/(2n), ..., (2n−1)/(2n)). If the
data come from exactly the theoretical distribution, then the resulting curve
(shown as a thick, black solid line) would be close to the 45 degree diagonal line
(shown as the black dashed line), except for some random sampling variability.
The region shaded by dotted lines is a visual device for understanding the

magnitude of the sampling variability. It is an overlay of Q-Q plots for 100
simulated data sets of size n = 734, 814 from the theoretical distribution. If
the data comes from the theoretical distribution, then with high probability it
should lie within the envelope. Large departures from the envelope indicate
regions in which the theoretical distribution is a poor Þt. In Figure 3 it is
apparent that the Þt is very poor for small data values. The dotted envelope
in Figure 3 is very narrow, especially at the lower end where the 100 curves
converge into a single thin line. The reason is that for the relatively large
sample size of n = 734, 814 the natural sampling variability is relatively small.
In Figure 3, both axes are shown on the log scale. This is because for the

heavy tailed distributions considered here, only a few large values dominate the
whole picture on the ordinary scale. The theoretical distribution shown is the
Pareto, with cumulative distribution function

F (x) = [1− (x/σ)α] 1(σ,∞)(x),
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where the shape parameter α = 1.24 and the scale parameter σ = 1499. The
corresponding complementary cumulative distribution function decreases like
x−α, as x → ∞, so it has an inÞnite variance, but Þnite mean. These Þtted
values were estimated by �quantile matching�, in particular they make the em-
pirical and theoretical 0.99 and 0.999 quantiles the same. The location of these
two quantiles is shown by two circles in the plot (the thick black curve crosses
the 45 degree line at these points). Three other quantiles are indicated by plus
signs, to show which parts of the curve represent which parts of the data set.
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Figure 3: Pareto Q-Q plot for response size data. Gray envelope gives
visual impression of variability. Shows reasonable, but not perfect, Þt for

larger quantiles.

Figure 3 shows that the response size data is not perfectly Þt by the Pareto(1.24,
1499) distribution. The Þt is particularly poor for the smaller data values. But
even above the median, the Q-Q curve bends substantially outside of the gray
envelope, which shows the distributional shape is also signiÞcantly different from
the Pareto in that region. However, with such a large data set, it would be
surprising if any simple distribution gave a perfect Þt. Also no effort had been
made to Þt the bulk of the distribution, but only the larger values, because
these drive the tail behavior being studied here. Furthermore, for the purpose
of �heavy tail durations lead to long range dependence�, this level of Þt appears
to be reasonably adequate.
Figure 4 is a parallel analysis, where the underlying theoretical distribution

is replaced by the log-normal. Again the parameters of the log-normal, µ = 5.28
and σ = 2.46 were chosen by 0.99 and 0.999 quantile matching.
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Figure 4: Log-normal Q-Q plot for the response size data. Shows Þt is not
much worse than for the Pareto.

Figure 4 shows that similar lessons to those for the Pareto (used in Figure 3)
apply. In particular, the Þt is not perfect, and is rather poor for small values.
But again no effort is made to Þt the bulk of the distribution, but instead
the emphasis is on the �upper tail�, where the Þt is reasonably acceptable.
There does seems to be �more overall curvature� than for the Pareto, so this
distribution does not give quite as good a Þt in the bulk of the distribution,
but still the Þt is surprisingly good in view of the above stated differences
between the Pareto(1.24) (heavy tailed, inÞnite variance), and the log-normal
(light tailed, all moments Þnite). The theoretical results shown in Section
3 show that the light tailed log-normal, can be �heavy tailed enough over a
large enough range� to yield the �long range dependence over a broad range
of lags� that had previously been associated only with heavy tailed duration
distributions.
Many variations are possible concerning the Q-Q analyses done here. To

save space, and because the lessons learned are tangential to the main point of
this paper, these are not shown here. However some graphics can be found in
the web directory

http://www.unc.edu/depts/statistics/postscript/

papers/marron/NetworkData/LogNorm2LRD/

For example, if the 0.99 and 0.999 quantiles are replaced by the 0.9 and 0.999
quantiles, then it is seen in the Þle RespSize2logNormQQall2.ps that the log-
normal yields a substantially better Þt in the body of the distribution, at the
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price of a poorer Þt in the upper tail. A wide range of different quantiles for
the Pareto can be studied from the movie Þles RespSize2ParQQq1p5.avi, Resp-
Size2ParQQq1p9.avi, RespSize2ParQQq1p99.avi, RespSize2ParQQq1p999.avi and
RespSize2ParQQq1p9999.avi. To see that the Weibull distribution gives a
much worse Þt than either the Pareto or log-normal considered here, see Resp-
Size2WeibullQQall.ps.
All data analyzed here were kindly provided by the UNC Computer Science

Distributed and Real-Time Systems Group, http://www.cs.unc.edu/Research/dirt/.

3 Log-Normal durations give long range depen-
dence

A deliberately simple model for the random process illustrated in Figure 1 is
considered here. Many variations are possible, and we view the establishment
of similar results in more realistic and general contexts as interesting open prob-
lems. For simplicity, only continuous time processes are considered here. A
sequence of such models, indexed by n = 1, 2, ... is considered because �heavy
tails� and �long range dependence� are asymptotic concepts. The ßow arrival
process (the point process of starting times of the horizontal line segments in
Figure 1) is a standard Poisson process with intensity parameter λn. The du-
ration times (the random lengths of the line segments) Ln, are independent,
identically distributed, with a log-normal (µn,σn) distribution independent of
the Poisson arrival process. Aggregation of the traffic is represented by Xn,t,
the number of active ßows (line segments) at time t.
One way to express long range dependence is in terms of the rate of decay

of the autocovariance

r(t;µn,σn,λn) = cov(Xn,s,Xn,t+s).

In particular, polynomial decay in t, r(t) ∼ t−(α−1) (in the sense that limt→∞
r(t)

t−(α−1) ∈
(0,∞)) with exponent α − 1 ∈ (0, 1), is typically viewed as a symptom of long
range dependence. This decay is easily obtained if Ln are Pareto, or asymp-
totically Pareto, because for the above model, the autocovariance is simply and
directly related to the tail of the duration distribution, as

r(t;µn,σn,λn) = λn

Z ∞

t

P (Ln ≥ s) ds, (1)

as seen for example in Cox (1984) and Resnick and Samorodnitsky (1999).
The main goal of this section is to Þnd sequences of parameters µn, σn, λn

for which the sequence of processes Xn,t exhibits this behavior in the sense that,
for a given C > 0, for every sequence Tn such that log Tn = o

¡
n1/2

¢
,

lim
n→∞ sup

1≤t≤Tn

¯̄̄̄
r (t;µn,σn,λn)

Ct−(α−1)
− 1
¯̄̄̄
= 0. (2)
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This says that the n-th model, is effectively long range dependent over the long
range of lags 1 to Tn.
Because the log-normal is �light tailed� according to most classical deÞ-

nitions (e.g. having all moments Þnite), the key to (2) is to Þnd parameter
sequences over which the Ln duration distribution �looks approximately heavy
tailed over a wide enough range�. This can be done for the log-normal by
assuming:

µn = −n, (3)

σn =

r−µn
α

=

r
n

α
. (4)

Assumption (3) means that most of the mass of the log-normal will be concen-
trated near 0, i.e. there will be �many mice� (the short line segments in Figure
1). But assumption (4) ensures a �few elephants� (the long lines in Figure 1).
Because of the lightness of the tails of the log-normal distribution, a Þnal as-
sumption is needed, to ensure the existence of enough elephants to create long
range dependence. This comes from an assumption of �increasing intensity�:

λn =
√
αneαn/2. (5)

At Þrst glance, assumption (5) might seem very strong, however, in an environ-
ment of exponentially increasing internet traffic, it is worth contemplating, and
is perhaps not far from realistic. We will show that these assumptions give

lim
n→∞ sup

1≤t≤Tn

¯̄̄̄
¯ r (t;µn,σn,λn)

(2π)−1/2 1
α−1 t

−(α−1)
− 1
¯̄̄̄
¯ = 0, (6)

which is (2) for the particular

C =
1

(α− 1) (2π)1/2
.

Rescaling λn appropriately will give (2) for a general C > 0.
To establish (6), note that the integrand of (1) can be rewritten as

P (Ln ≥ s) = P (exp (µn + σnZ) ≥ s) = P (Z ≥ (log s− µn) /σn)

= P

µ
Z ≥ √αn+

r
α

n
log s

¶
,

where Z is a standard Gaussian random variable. A useful bound (leading
to Mill�s ratio) comes from the inequalities, valid for any t > 0, and following
from integration by parts (see e.g. problem 4.14.1.c of Grimmett and Stirzaker
(2001))

(2π)−1/2
¡
t−1 − t−3¢ e−t2/2 ≤ P (Z > t) ≤ (2π)−1/2 t−1e−t2/2. (7)
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Using (5), and applying the right hand bound in (7) gives, for every s ≥ 1,

λnP (Ln ≥ s) ≤ √
αneαn/2 (2π)

−1/2 1√
αn+

p
α
n log s

e−
1
2(
√
αn+

√
α
n log s)

2

≤ (2π)
−1/2

s−αe−
α(log s)2

2n ≤ (2π)−1/2 s−α.
Hence for all t ≥ 1,

r (t;µn,σn,λn) ≤ (2π)−1/2
1

α− 1 t
−(α−1).

Similarly using the left hand bound in (7), let Sn be an increasing sequence,
such that logSn = o

¡
n1/2

¢
. For every 1 ≤ s ≤ Sn

λnP (Ln ≥ s) ≥
√
αneαn/2(2π)−1/2 exp

"
−1
2

µ√
αn+

r
α

n
log s

¶2#

×
"

1√
αn+

p
α
n log s

− 1¡√
αn+

p
α
n log s

¢3
#

=(2π)−1/2s−αe−
α(log s)2

2n

×
" √

αn√
αn+

p
α
n log s

−
√
αn¡√

αn+
p

α
n log s

¢3
#

≥(2π)−1/2s−αcn,
where

cn = e
−α(logSn)

2

2n

Ã
1

1 + logSn
n

− 1

αn

!
and limn→∞ cn = 1. Consider an increasing sequence Tn, such that log Tn =
o
¡
n1/2

¢
. Clearly if Sn = T 2n + n then logSn = o

¡
n1/2

¢
. Hence if 1 ≤ t ≤ Tn

r(t;µn,σn,λn) ≥
Z t2+n

t

(2π)−1/2s−αcnds

=(2π)−1/2cn
1

α− 1
h
t−(α−1) − (t2 + n)−(α−1)

i
,

and so

r(t;µn,σn,λn)

(2π)−1/2 1
α−1 t

−(α−1) ≥cn
"
1−

µ
t2 + n

t

¶−(α−1)#
≥cn

³
1− 2−(α−1)n−(α−1)/2

´
.

Hence,

lim
n→∞ sup

1≤t≤Tn

¯̄̄̄
¯ r(t;µn,σn,λn)

(2π)−1/2 1
α−1 t

−(α−1) − 1
¯̄̄̄
¯ = 0.
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4 Conclusions
This paper considered the controversy of whether internet ßow distributions are
heavy tailed or not, with a particular view towards understanding the implica-
tions for long range dependence. Some data analysis suggested that both the
heavy tail Pareto and the light tail log-normal give reasonable Þts, although nei-
ther is perfect, and the Pareto is somewhat better. This appears contradictory,
because the Pareto that Þtted had an inÞnite variance, while the log-normal had
all moments Þnite. Some new theoretical work revealed that these distributions
are not so inconsistent as was previously thought, which is consistent with the
above data analysis. In particular it is shown here that even (a sequence of
suitable parametrizations of) the light tailed log-normal distribution can lead to
long range dependence. A clear lesson is that moments (e.g. Þniteness of vari-
ance) provide a poor way of understanding the type of distributional properties
that are important to internet traffic.
Interesting open problems that follow from this work include a correspond-

ing data analysis for other data sets, and generalizations of the theoretical re-
sults. Potential generalizations of the theory include Þnding other parameter
sequences for the log-normal giving long range dependence, and an investigation
of which other light tailed parametric families can yield long range dependence.
There is also lots of room for improvement of modelling of the duration dis-
tribution, including mixture and �piece-wise� models, which could then yield
parallel theoretical results.
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