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Two Worlds

World 1:  “Euclidean vector space”,
P ~ ~ 1
A =ig: ?:yl,...,ynl Ay

World 2:  “(Hilbert) Function Space”,
L ={/(): ¢ f()dr <¥]

Connection: via “digitization”
For equally spaced O£ x, <---<x £1,
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Relate f(x) to ¢ : =
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Inner Product Structure

World 1:
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World 2:
J
(f.8)= ¢ F(0)g(x)dx
Consequences:

1. “distance” = ./(a- b,a- b)

2. “angle”: a"b U (a,b)=0

Connection: Riemann Summation



Linear Bases

{y Y 2,...} 1s a “basis” means every member
f has a linear representation:

f=aay,

A basis 1s “orthonormal” when:
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(all orthogonal to each other, with length 1)



Orthonormal Bases

Consequences:

- Compute g, =(fy )

- transform 1s a “rotation” operation
(lengths and angles preserved)



Example 1: Unit vector basis

orthonormal

@’10

for y=c¢: + transform has q, =y,

Syn

“1dentity rotation”



Example 2: Fourier Basis

Show FourierBasis.ps, with sin’s and cos’s.

World 1: Discrete Fourier Basis

World 2: Continuous Fourier Basis

Exactly orthonormal in both (takes
trigonometry)

Fourier Transform: Rotation that
“decomposes 1nto periodicities™



Example 3: Haar Wavelet Basis

Show HaarFullBasis.ps

“Up and Down” step functions, y

“doubly indexed” by:
- “scale” j

- “location” £k
“dilation form™:y  (x)=2"""y (27 x- k)
Exactly orthonormal in both worlds

Dyadic structure, very similar to cascades

Histogram View: successive differences

Show HaarHisto.ps



Example 4: Smoother Wavelet Bases

Daubechies 4: Continuous but “rough”

Show Daub4Basis.ps

Symmlet 8: much smoother, still “local”

Show Symm&Basis.ps



Application 1: Signal Compression

Idea: represent y by transform q, and
hope that “many q, » 0”

- “lossless compression”, want (, =0

- “approximate compression”, replace
g by 0 when “close”

Main Concept:

“Good Compression” U mored. »0
l



Quality of approximation:

Measure by “Energy” in signal:

_2 _ 2
Ey—ayi or Ef—(;f(x)dx

- lossless compression: E = E;

(Parseval Identity) _

- Good approximation: Ez » B,

- Bad approximation: £ y > E,



Approximation Folklore:

Unit vectors: terrible for interesting signals

Fourier basis: good for smooth and periodic

Wavelet bases: allow some jumps

$ many variations, and ways of “cooking up
good bases”

Show ExactRiskEGs.ps and CompressionEG.ps



Application 2: Denoising

Goal: from “data” y=s+n

—
—_—

try to recover “signal” s

from “noise” n, (e.g.1.1.d. mean 0)

Transform approach:

- find “rotation” with “good
compression of signal”

- zero out small qQ,

- 1nvert transform



Denoising Examples

Show WaveDNFourier.eps, StepDNFourier.eps and WaveStepDNHaar.eps

Wave Target:
- Fourier basis: Excellent

- Haar basis: Poor

Step Target:

- Fourier basis: Terrible

- Haar basis: Excellent

Note: driven by signal compression



Fast Computation

of transform: qQ, =(y,.y,), i=L..,n

1. Naive implementation: O(n°) matrix
multiplication

2. Fast Fourier Transform: O(nlogn)
using trigonometric properties

3. Fast wavelet Transform: O(n) using
simple “pyramid algorithm”



Haar Pyramid Algorithm, I
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Show HaarFullBasis.ps again



Haar Pyramid Algorithm, II
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Show HaarFathers.ps

Note: father vectors are also a basis (but not
orthonormal)

Can mix and match mothers and fathers

Show HaarPartBasis.ps



Haar Pyramid Algorithm, III

Relations across scales:

1. Magnification (dilation):
| ;4 18 “half width” of | |

y . is “halfwidth” of y |

2. Father ® Mother, Father

G JHL2k+1 - j+!,2k)
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Haar Pyramid Algorithm, IV

Apply 1nner product to get:

qj,k = % (fj+1,2k+1 - fj+1,2k)

1

fj,k = E (fj+1,2k+1 t fj+1,2k)

where

fia=liuy)

Start with  f,, .« =V, and iterate up
through scales, to get O(n) algorithm



Haar Pyramid Algorithm, V

Overall Structure:

S isr00e- ...,fj+1,2,+1_1
K«
lo pass (avg) hi pass (avg)
fj,O:“‘:fj,zj_l qj,Oa'--aqj,y_l
K«



Haar Pyramid Algorithm, VI

Notes:

1. each level is “energy preserving”:

21:)1-1 , 2{)-1 , 2{)-1 ,
a. fj+1,k :a fj,k +a. qj,k
k=0 k=0 k=0

2. “Energy of constants” passedto f’s

3. “Anti-constant energy” passed to Qs

Again visit ExactRiskEGs.ps and CompressionEG.ps

4. “Energy 1ssues” are ANOVA style
decomposition of sums of squares



