Cross-Disciplinary Approaches

to Empirical Networking Research

Jeffay, Kulkarni, Marron, Smith

OVERVIEW

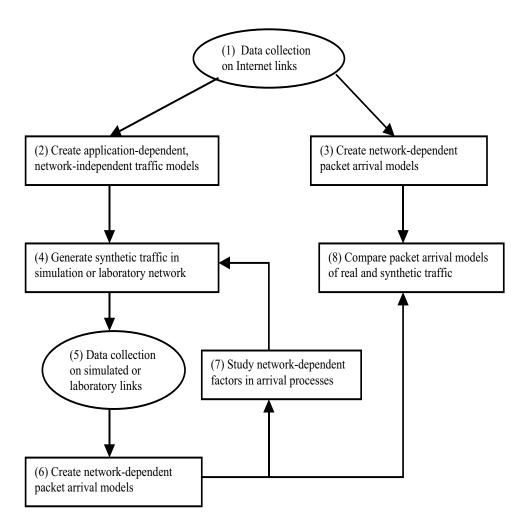


Figure 1: The flowchart showing the proposed plan of our research.

MAJOR GOAL

Develop tools for automatic collection and analysis of Internet traffic data, a continuously updated database of traffic traces, the statistical procedures for estimating the parameters of the models, procedures for synthetic traffic generation, and comparing and evaluating various traffic models.

MeMoSA: a collection of software tools for the Measuring, Modeling and Statistical Analysis of Internet traffic.

SUB-GOALS

- 1. Develop and continuously updating a terrabyte size database of network traffic traces.
- 2. Study and develop network-dependent traffic models of link-level and application-level traffic traces.
- 3. Study and develop network-independent traffic models of user behavior and network work-load generation.
- 4. Develop a scheme based on statistical clustering procedures to classify the ever-increasing Internet applications into a manageable number of statistically homogeneous traffic classes.
- 5. Develop the statistical procedures to fit traffic models to traffic traces and evaluate the goodness of fit.
- 6. Investigate the theoretical and empirical properties of the proposed new cascaded on-off model.

1. DATA BASE

Updated continuously to reflect changing traffic characteristics.

• Link Traces

- 1. Link Info (speed etc)
- 2. Time Info
- 3. Time stamp and packet size for each packet in the trace.

• Connection Traces

- 1. Link Info (speed etc)
- 2. Time Info
- 3. Origin, destination connection address
- 4. Port Number
- 5. Time stamp and packet size for each packet in the trace.

2. Network-Dependent Traffic Models

• Connection Traces

- 1. Renewal Arrivals.
- 2. On-Off Model.
- 3. Conservative Cascades.
- 4. Cascaded On-Off Model.

• Link Traces.

- 1. Simplest Model: IID.
- 2. Markov Modulated Sequence.
- 3. Time Series Model.
- 4. TES Model.
- 5. Self Similar Traffic Models.
- 6. Conservative Cascades.
- 7. Cascaded On-Off Model.
- From connection Traces to Link Traces.

3. Network-Independent Traffic Models

- 1. Distribution of the number of TCP connections initiated by a user
- 2. Application specific file size distributions
- 3. Distribution of the structures and sizes of web pages
- 4. Distributions of the amount of transmitted data in TCP connections
- 5. Distributions of think times
- 6. Time dependent user arrival processes
- 7. Actual user behavior trajectories

4. Classification of Applications.

A top level hierarchy:

- Each TCP connection carries a single application-level data unit in each direction (a single request-response model). HTTP/1.0 is a member of this class.
- Each TCP connection carries multiple pairs of application-level data units (a multiple request-response model). HTTP/1.1, SMTP, FTP-control, etc., are members of this class. This class should be further refined into different subclasses based on a statistical classification of properties such as the distribution of application-level data unit sizes, the arrival process of data units, etc., so that the members of th class are statistically homogenous.
- Each TCP connection carries a single applicationlevel data unit in only one direction. FTP-data is a member of this class.
- Each TCP connection carries multiple applicationlevel data units in only one direction.

5. Statistical Analysis.

- Statistcal summaries of traces.
- Statistic estimation of model parameters for selected models
- Simulation from estimated model
- Envelope analysis

6. Proposed Cascaded On-Off Model.

• Let $\{X_i(t): t \geq 0, i = 1, 2, 3...\}$ be a sequence of independent stationary Continuous Time Markov Chains (CTMC) on the state space $\{0, 1\}$ with rate matrix

$$A_i = \begin{bmatrix} -2^{i-1}\mu & 2^{i-1}\mu \\ 2^{i-1}\lambda & -2^{i-1}\lambda \end{bmatrix}.$$

• Define

$$Z_n(t) = m \left(\frac{\lambda + \mu}{\mu}\right)^n \prod_{i=1}^n X_i(t), \quad t \ge 0.$$

- $\{Z_n(t), t \geq 0\}$ is the cascaded on-off model with parameters n, λ and μ . We propose to study its sample path properties, the mean, variance, quantiles and distributions of the on and off times, the autocovariance function of the Z_n process, limiting properties of the Z_n process as $n \to \infty$, queuing analysis with Z_n as the input process, statistical estimation of the parameters λ, μ , and n.
- Study the ramifications of using different scaling instead of 2^i , and of non-Markovian on-off processes at the lowest or the highest level.