
 
ORIE 779:    Functional Data Analysis 

 
From last meeting 

 
 
Principal Component Analysis of  Cornea Data 
 
 

Try alternate “static view” (better projection?) 
 
PC1:  Overall curvature  &  “with the rule” astigmatism 
 
PC2:  Steeper superior vs. inferior  &  clear outlier effect 
 
PC3:  With the rule vs. against the rule astigmatism  &  outlier 
  



From last meeting (cont.) 
 
 
Clear problem with PCA: 
 
 

Edge effects  ⇒  “outliers”  ⇒    “pulls off PC direction” 
 
 
 
Outlier Deletion:  still had problems with 10% of data deleted 
 
 
 
Motivated alternate approach:      Robust Statistical Methods 
 

Main idea:    downweight (instead of delete) outliers 
 



Robust Functional Data Analysis 
 
What is “multivariate median”? 
 
 
There are several!    (“median” generalizes in different ways) 
 

i. Coordinate-wise median    
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- often worst  
 

- not rotation invariant (2-d data uniform on “L”) 
 

- can lie on convex hull of data (same example) 
 

- thus poor notion of “center” 
 



Robust Functional Data Analysis (cont.) 
 
What is “multivariate median” (cont.)? 
 
 
ii. Simplicial depth  (a. k. a. “data depth”):  Liu, R. Y. (1990) 

“On a notion of data depth based on random simplices”, 
Annals of Statistics, 18, 405-414. 

 
-  “paint thickness” of 1+d  dim “simplices” with corners at 

data 
 

- Nice idea 
 

- Good invariance properties 
 

- slow to compute 
 



Robust Functional Data Analysis (cont.) 
 
 
What is “multivariate median” (cont.)? 
 
 
iii. Huber’s   pL    M-estimate: 
 
Given data  d

nXX ℜ∈,...,1 ,  estimate “center of population” by 
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where 2⋅   is the usual Euclidean norm. 
 
Here:    use only  1=p     (minimal impact by outliers) 
 



Robust Functional Data Analysis (cont.) 
 

1L    M-estimate (cont.): 
 
A view of minimizer:  solution of  
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A useful viewpoint is based on: 
 

)1,(θSphP   =  “Proj’n of data onto sphere cent’d at  θ   with radius 1” 
 
And representation: 
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Robust Functional Data Analysis (cont.) 
 

1L    M-estimate (cont.): 
 
Thus the solution of  
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is the solution of:  

{ }niXPavg iSph ,...,1:0 )1,( =−= θθ  
 
So  θ̂   is “location where projected data are centered” 
 

[toy data illustration] 
 
“slide sphere around until mean (of projected data) is at center” 
 



Robust Functional Data Analysis (cont.) 
 

1L    M-estimate (cont.): 
 
Additional literature: 
 
Called “geometric median” (long before Huber) by:  Haldane 

(1948) Note on the median of a multivariate distribution. 
Biometrika, 35, 414-415. 

 
Shown unique for 1>d  by:  Milasevic and Ducharme (1987) 

Uniqueness of the spatial median, Annals of Statistics, 15, 
1332-1333. 

 
Useful iterative algorithm:  Gower (1974). The mediancentre. 

Applied Statistics, 23, 466-470 (see also Sec. 3.2 of Huber). 
(Cornea Data experience:  works well for  66=d ) 

 



Robust Functional Data Analysis (cont.) 
 
 

1L  M-estimation for Cornea Data 
 
 

Sample Mean                 1L  M-estimate 
 
 

- Definite improvement 
 

- But outliers still have some influence 
 

- Improvement?    (will suggest one soon) 
 



Robust Functional Data Analysis (cont.) 
 
 
Now have robust measure of “center”, how about “spread”? 
 
I.e. how can we do robust PCA? 
 
 
Recall: 
 
  2-d Toy Example 
 
  Parabolas with 1 outlier 
 
 



Robust Functional Data Analysis (cont.) 
 
 
Approaches to Robust PCA: 
 
 

1. Robust Estimation of Covariance Matrix 
 

 
2. Projection Pursuit 

 
 

3. Spherical PCA 
 
 
 



Robust Functional Data Analysis (cont.) 
 
 
Robust PCA 1:    Robust Estimation of Covariance Matrix 
 
 
A.    Component-wise Robust Covariances: 
 

- Major problem:  hard to get non-negative definiteness 
 
 
B.    Minimum Volume Ellipsoid:    Rousseeuw, and Leroy (1987) 

Robust regression and outlier detection, Wiley, New York. 
 

- Requires  dn >    (at least in available software) 
 

- Needed for simple definition of “affine invariant” 
 



Important Aside 
 
 
Major difference between Functional Data Analysis 
 

& Classical Multivariate Analysis 
 
 
 High Dimension, Low Sample Size Data 
 

(sample size  n  <  dimension  d ) 
 
 
Classical Multivariate Analysis: 
 

- start with “sphering data” (multiply by  2/1−Σ ) 
 

- but  2/1−Σ   doesn’t for HDLSS data 



Important Aside (cont.) 
 
 
Classical Approach to HDLSS data: 
 
 “Don’t have enough data for analysis, go get more” 
 
 
Unworkable (and getting worse) for many modern settings: 
 

- Medical Imaging (e.g. Cornea Data,  43=n   and  66=d ) 
 

- Micro-arrays & gene expression  (e.g. 86=n  and 400=d ) 
 

- Chemometric spectra data  (e.g. 81=n  and 1500=d ) 
 

� 
 



Robust Functional Data Analysis (cont.) 
 
Robust PCA 2:    Projection Pursuit 
 
Idea:  focus “finding direction of greatest variability” 
 
Reference:  Li, G. and Chen, Z. (1985) “Projection pursuit 
approach to robust dispersion matrices and principal 
components: primary theory and Monte Carlo”, Journal of the 
American Statistical Association, 80, 759-776. 
 
Problems:   

- Robust estimates of “spread” are nonlinear 
- Results in many local optima 
- Makes search problem very challenging 
- Especially in very high dimensions 
- Most examples have  5,4=d  
- Guoying Li:   “I’ve heard of 20=d , but 60 seems too big” 



Robust Functional Data Analysis (cont.) 
 
Robust PCA 3:    Spherical PCA 
 
 
Idea:  use “projection to sphere” idea from 1L  M-estimation 
 
In particular project data to centered sphere   
 

[toy conventional PCA]             [toy spherical PCA] 
 

- “hot dog” of data becomes “ice caps” 
 

- easily found by PCA 
 

- outliers “pulled in to reduce influence” 
 

- radius of sphere unimportant 



Robust Functional Data Analysis (cont.) 
 
Spherical PCA: 
 
 
Toy example:  parabolas, with 1 outlier [recall raw data] 
 
Recall conventional PCA: 
 

- Outlier had small effect on mean 
 

- Outlier had some effect on PC1 direction 
 

- Outlier completely dominated PC2 direction 
 

- Original (with no outlier) PC2 became PC3 
 



Robust Functional Data Analysis (cont.) 
 
Spherical PCA (cont.): 
 

Toy example:  parabolas, with 1 outlier (cont.) 
 
 
Spherical PCA: 
 

- Mean looks “smoother” 
 
- PC1 nearly “flat” (unaffected by outlier) 

 
- PC2 is nearly “tilt” (again unaffected by outlier) 

 
- PC3 finally strongly driven by outlier 

 
- OK, since all other directions “about equal in variation” 

 



Robust Functional Data Analysis (cont.) 
 
Spherical PCA (cont.): 
 
Toy example:  parabolas, with 1 outlier (cont.) 
 

- Neither PC3 nor PC4 “caught all of the outlier” 
 

- An effect of this down-weighting method 
 

- PC 2R  lines for “sphered data” 
 

- PC 2R  symbols show “SS for curves” (visual impression) 
 

- Latter are not monotonic! 
 

- Reflects “reduced influence” property of spherical PCA 



Robust Functional Data Analysis (cont.) 
 
 
Spherical PCA for Cornea Data: 
 
Some improvement, but still had outlier influence 
 
Reason:  projection onto sphere “distorts the data” 
 
 
Problem is visible in Parallel Coordinate Plot for Cornea Data 
 
Top Plot:    Zernike Coefficients 
 

- All 43=n   very similar 
 

- Most action in a few low frequencies 
 



Robust Functional Data Analysis (cont.) 
 
Parallel Coordinate Plot for Cornea Data (cont.) 
 
 
Middle Plot:    Zernike Coefficients – median 
 

- Most Variation in “lowest frequencies” 
 

- E.g. as in “Fourier compression of smooth signals” 
 

- Projecting on sphere will destroy this 
 

- By magnifying high frequency behavior 
 
 
Bottom Plot:    discussed later 
 
 



Robust Functional Data Analysis (cont.) 
 
 
 
Solution:     “Elliptical Analysis” 
 
 
Main idea:    project data onto “suitable ellipse”, not sphere 
 
 
 
 
Which ellipse?     (in general, this is problem that PCA solves!) 
 
 
Simplification:    Consider ellipses “parallel to coordinate axes” 
 
 



Robust Functional Data Analysis (cont.) 
 
 
Elliptical Analysis (cont.): 
 
Simple Implentation:    via coordinate axis rescaling 
 

1. Divide each axis by MAD 
 
2. Project Data to sphere (in transformed space) 
 
3. Return to original space (mul’ply by orig’l MAD) for analysis 

 
Where   MAD = Median Absolute Deviation (from median) 
 

( )ii xmedianxmedian −=  
 
(simple, high breakdown, outlier resistant measure of “scale”) 



Robust Functional Data Analysis (cont.) 
 
 
Elliptical Estimate of “center”: 
 
Do 1L  M-estimation in transformed space (then transform back) 
 
 
Results for cornea data: 
 

Sample Mean          Spherical Center        Elliptical Center 
 
 

- Elliptical clearly best 
 

- Nearly no edge effect 
 


