
 
ORIE 779:    Functional Data Analysis 

 
From last meeting 

 
 
Robust Functional Data Analysis 
 
Several “multivariate medians” 
 
i. Coordinate-wise median     

- not rotation invariant (2-d data uniform on “L”) 
- can lie on convex hull of data (same example) 
- thus poor notion of “center” 

 
ii. Simplicial depth  (a. k. a. “data depth”) 

- slow to compute 
 



From last meeting (cont.) 
 
iii. Huber’s   pL    M-estimate: 

[toy data illustration] 
“slide sphere around until mean (of projected data) is at center” 
 
 
Approaches to Robust PCA: 
 

1. Robust Estimation of Covariance Matrix 
 Major problem 1:  hard to get non-negative definiteness 
 Major problem 2:  High Dimension Low Sample Size 

 
2. Projection Pursuit 

Major problem:  slow to compute 
 



From last meeting (cont.) 
 
Approaches to Robust PCA (cont.): 
 

3. Spherical PCA 
 
Idea:  use “projection to sphere” idea from 1L  M-estimation 
In particular project data to centered sphere   
 

[toy conventional PCA]             [toy spherical PCA] 
 

- “hot dog” of data becomes “ice caps” 
- easily found by PCA 
- outliers “pulled in to reduce influence” 
- radius of sphere unimportant 

 
Problem:  “whitening”  (i.e. magnificat’n of high frequency terms) 



From last meeting (cont.) 
 
Solution:     “Elliptical Analysis” 
 
Main idea:    project data onto “suitable ellipse”, not sphere 
 
Simple Implementation:    via coordinate axis rescaling 
 

1. Divide each axis by MAD 
 
2. Project Data to sphere (in transformed space) 
 
3. Return to original space (mul’ply by orig’l MAD) for analysis 

 
Where   MAD = Median Absolute Deviation (from median) 
 

( )ii xmedianxmedian −=  



Robust Functional Data Analysis (cont.) 
 
 
Elliptical Estimate of “center”: 
 
Do 1L  M-estimation in transformed space (then transform back) 
 
 
Results for cornea data: 
 

Sample Mean          Spherical Center        Elliptical Center 
 
 

- Elliptical clearly best 
 

- Nearly no edge effect 
 



Robust Functional Data Analysis (cont.) 
 
 
Elliptical PCA:    Do PCA on data projected to ellipse 
 
 
Recall Toy Example,    Parabolas with an outlier 
 

Conventional PCA      Spherical PCA        Elliptical PCA 
 
 

- Spherical & Elliptical are very nearly the same 
 

- since scales nearly same in coordinate directions 
 

- but a few small differences (study SS’s) 
 



Robust Functional Data Analysis (cont.) 
 
 
Elliptical PCA for cornea data: 
 
 
Original PC1,    Elliptical PC1 
 

- Still finds “overall curvature & correlated astigmatism” 
 

- Minor edge effects almost completely gone 
 
 
Original PC2,    Elliptical PC2 
 

- Huge edge effects dramatically reduced 
 

- Still find “steeper superior vs. inferior” 



Robust Functional Data Analysis (cont.) 
 
 
Elliptical PCA for cornea data (cont.): 
 
 
Original PC3,    Elliptical PC3 
 

- Edge effects greatly diminished 
 

- But some of “against the rule astigmatism” also lost 
 

- Price paid for robustness 
 
 
Original PC4,    Elliptical PC4 
 
 - Now looks more like variation on astigmatism??? 



Robust Functional Data Analysis (cont.) 
 
 
Another population of corneas: 
 
 
Kerataconus:   “regions (cones) of very sharp curvature” 
 
 
 Raw Data          (bright red cones) 
 
 
 
Structure of the population? 
 
 Try PCA 
 



Robust Functional Data Analysis (cont.) 
 
Conventional PCA for Kerataconic Population 
 

- Mean shows an “average cone” 
 

- Mean affected by edge effects 
 

- Major edge effects in all PC directions 
 

- Thus strong need for robust PCA (e.g. elliptical) 
 

- PC1 is “width of cone”  (& outlier) 
 

- PC2 is “horizontal location of cone” 
 

- PC3 & PC4 also about location of cone 
 



Robust Functional Data Analysis (cont.) 
 
Elliptical PCA for Kerataconic Population: 
 

- Edge Effects greatly diminished 
 

- Mean similar, but narrower (in middle) & no edge effect 
 

- PC1 is “width and strength of cone” 
 

- PC2 is “narrow sharpness of cone” 
 

- PC3 is “horizontal location” 
 

- PC4 is outlier driven 
 

- So elliptical PCA is not perfect 
 



Robust Functional Data Analysis (cont.) 
 
 
Disclaimer about robust analysis of Cornea Data: 
 
 
Critical parameter is “radius of analysis”, 0R  
 

mmR 40 = :    Shown above, Elliptical PCA very effective 
 

:2.40 mmR =     Stronger edge effects, Elliptical PCA less useful 
 

mmR 5.30 = :    Edge effects weaker, don’t need robust PCA 
 
 



Robust Functional Data Analysis (cont.) 
 
 
One more Toy Example:    Same Parabolas, with 2 outliers 
 

Raw Data 
 
Outliers chosen to be “orthogonal” 
 

- 1st is “highest Fourier frequency” 
 

- 2nd outlier is (rescaled) “2nd highest  Fourier frequency” 
 

- (will explain this later) 
 
 
 



Robust Functional Data Analysis (cont.) 
 
Toy Example:    Parabolas, with 2 outliers  (cont.) 
 
Standard PCA: 
 

- PC1 still “vertical shift, affected by 1st outlier” 
 

- PC2 still 1st outlier 
 

- Makes sense since “less variation” in 2nd outlier (than 1st) 
 

- PC3 & PC4 a “muddling” of 2nd outlier and “slant” 
 

- “Dir’n of greatest var’n”, may not be “most useful dir’n” 
 

- Also unclear desired dir’ns are orthogonal (but PCA is) 



Robust Functional Data Analysis (cont.) 
 
Toy Example:    Parabolas, with 2 outliers  (cont.) 
 
 
Standard PCA  (cont.):    Some approaches: 
 

- Interactive choice of some basis directions: 
- E.g. choose 3rd direction by 2nd outlier 
- Could also choose 1st dir’n to be exactly “vertical shift” 
- Generally useful, but will require “art” (i.e. expertise) 

 
- VARIMAX rotation of subspaces 

- From Section 6.3.3 of Ramsey and Silverman (1997) 
- A good topic for student presentation 

 
- Robust Spherical PCA 

 



Robust Functional Data Analysis (cont.) 
 
Toy Example:    Parabolas, with 2 outliers  (cont.) 
 
 
Robust Spherical PCA 
 

- Center:  L1 M-est.  avoids “sharp corners” 
 

- PC1:  same good job, with “vertical shift” 
 

- PC2:  still nicely shows “slant” 
 

- Remaining PCs:  Outliers now “separated” 
 

- Again PC directions “not best”? 
 

- Which PCs do explain outliers? 



Robust Functional Data Analysis (cont.) 
 
Toy Example:    Parabolas, with 2 outliers  (cont.) 
 
 
Spherical PCA, PC5-9: 
 

- Outliers spread over all remaining PCs 
 

- So goal of “downweighting outliers” was achieved 
 

- I.e. outliers have nearly no effect on PC directions 
 

- Good?     Or bad? 
 

- Depends on context (outliers worthwhile or distracting?) 



Deeper look at PCA 
 
 
Now know usefulness of PCA, so let’s “look under the hood” 
 
 
Three important (and interesting) viewpoints: 
 

1. Mathematics 
 
2. Numerics 

 
3. Statistics 

 
 
 
First:  Review linear algebra and multivariate probability 
 



Linear Algebra Review 
 
 
Vector Space: 
 

- set of “vectors”,  x, 
 

- and “scalars” (coefficients),  a  
 

- “closed” under “linear combination”  (∑
i

ii xa   in space) 
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Linear Algebra Review, (cont.) 
 
 
Subspace: 
 

- subset that is again a vector space 
 

- i.e.  closed under linear combination 
 

- e.g.  lines through the origin 
 

- e.g. planes through the origin 
 

- e.g. subspace “generated by” a set of vectors 
(all linear combos of them  = 
                    = containing hyperplane through origin) 

 
 
 



Linear Algebra Review, (cont.) 
 
Basis of subspace:  set of vectors that: 
 

- “span”,  i.e. everything is a linear combo of them 
 

- are “linearly independent”,  i.e. linear combo is unique 
 

- e.g.  dℜ   “unit vector basis”   















































































1
0

0

,...,

0

1
0

,

0

0
1

�

��
 

 - e.g.      
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Linear Algebra Review, (cont.) 
 
 
Basis Matrix, of subspace of  dℜ  
 
Given a basis,  nvv ,...,1 ,  create “matrix of columns”: 
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Then “linear combo” is a matrix multiplication: 
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Check sizes:     )1()(1 ×↔×=× nndd  
 



Linear Algebra Review, (cont.) 
 
Aside on matrix multiplication:  (linear transformation) 
 

For matrices    
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Define the “matrix product”   
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(“inner products” of columns with rows) 
(composition of linear transformations) 

 
Often useful to check sizes:      nmmknk ×↔×=×  



Linear Algebra Review, (cont.) 
 
Matrix trace:   
 

For a square matrix    
















=

mmm

m

aa

aa
A

,1,

,11,1

�

���

�

, 

 

Define    ∑
=

=
m

i
iiaAtr

1
,)(  

 
 
Trace commutes with matrix multiplication: 
 

( ) ( )BAtrABtr =  
 



Linear Algebra Review, (cont.) 
 
 
Dimension of subspace  (a notion of “size”): 
 

- number of elements in a basis (unique) 
 

- ( ) dd =ℜdim    (use basis above) 
 

- e.g.    dim of a line is  1 
 

- e.g.    dim of a plane is  2 
 

- dimension is “degrees of freedom” 
 
 
 


