ORIE 779:    Functional Data Analysis
From last meeting

Finished SiZer Background 

Started Independent Component Analysis

Independent Component Analysis

Idea:  Find “directions that maximize independence”

Motivating Context:  Signal Processing

“Blind Source Separation”

References:

Lee, T. W. (1998) Independent Component Analysis: Theory and Applications, Kluwer.

Hyvärinen and Oja (1999) Independent Component Analysis: A Tutorial,  http://www.cis.hut.fi/projects/ica
Hyvärinen, A., Karhunen, J. and Oja, E. (2001) Independent

Component Analysis, John Wiley & Sons.

ICA, motivating example

“Cocktail party problem”:

· hear several simultaneous conversations

· would like to “separate them”

Model for “conversations”:  time series:
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Toy Example
ICA, motivating example (cont.)

Mixed version of signals:
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And also a second mixture (e.g. from a different location):


[image: image4.wmf](

)

(

)

(

)

t

s

a

t

s

a

t

x

2

22

1

21

2

+

=


Mixed version of above toy example
ICA, motivating example (cont.)

Goal:  Recover  “signal”  
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  from  “data”  
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for unknown “mixture matrix”  
[image: image7.wmf]÷

ø

ö

ç

è

æ

=

22

21

12

11

a

a

a

a

A

,  where
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i.e. find “separating weights”,  
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,  so that
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Problem:    
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    would be fine, but  
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  is unknown
ICA, motivating example (cont.)

Relation to FDA:  recall “data matrix”  
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Signal Processing:  focus on rows (
[image: image16.wmf]d

  time series, for  
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Functional Data Analysis:  focus on columns (
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  data vectors)

Note:  same 2 different viewpoints as “dual problems” in PCA

ICA, motivating example (cont.)

Scatterplot View (signal processing):    plot

· signals & scatterplot    
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· data & scatterplot    
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· scatterplots give hint how ICA works

· affine trans. 
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  “stretches indep. signals into dep.”

· “inversion” is key to ICA (even when 
[image: image22.wmf]A

 is unknown)

ICA, motivating example (cont.)

Scatterplot view of:      Why not PCA?

· finds “direction of greatest variability”  [PCA - scatterplot]

· which is wrong direction for “signal separation”

[PCA  decomposition]

ICA, Algorithm

ICA Step 1:

· “sphere the data”   (shown on right in scatterplot view)

· i.e. find linear transf’n to make  mean = 
[image: image23.wmf]0

,  cov = 
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· i.e. work with 
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· requires  
[image: image26.wmf]X

  of full rank  (at least  
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,  i.e. no HDLSS)

(is this critical????)

· search for “indep.” beyond linear and quadratic structure

ICA, Algorithm (cont.)

ICA Step 2:

· Find dir’ns that make (sph’d) data as “indep. as possible”

Recall “independence” means: 

joint distribution is product of marginals

In cocktail party example [scatterplot]:

Happens only when “support parallel to axes”

Otherwise have “blank areas”, but marginals are non-zero

ICA, Algorithm (cont.)

Parallel Idea (and key to algorithm):  

Find directions that maximize “non-Gaussianity”

Reason:  starting from independent coordinates

“most projections are Gaussian”

(since projection is “linear combo”)

Mathematics behind this:  

Diaconis and Freedman (1984) Annals of Statistics, 12, 793-815.

ICA, Algorithm (cont.)

Worst case for ICA:  

· Gaussian

· Then sphered data are independent

· So have “independence” in all directions
· Thus can’t find useful directions

· Gaussian distribution is characterized by:

Independent   &  spherically symmetric

ICA, Algorithm (cont.)

Criteria for non-Gaussianity / independence:

· kurtosis    (
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· negative entropy

· mutual information

· nonparametric maximum likelihood

· “infomax” in neural networks

· 
[image: image29.wmf]$

  interesting connections between these

ICA, Algorithm (cont.)

Matlab Algorithm (optimizing any of above):    “FastICA”

· numerical gradient search method

· can find directions “iteratively”

· or by “simultaneous optimization”

· appears fast, with good defaults

· should we worry about local optima???

Again view raw data, mixed version, ICA decomp.
ICA, Algorithm (cont.)

Notational summary:

1. First sphere data:    
[image: image30.wmf](
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2. Apply ICA:   find 
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    to make rows of   
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    “indep’t”

3. Can transform back to “original data scale”:   
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ICA, Algorithm (cont.)

Identifiability problem 1:  Generally can’t order rows of  
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Since for a “permutation matrix”  
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(pre-multiplication by  
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  “swaps rows”)

(post-multiplication by  
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  “swaps columns”)

for each column,  
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    i.e. 
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So  
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  and  
[image: image42.wmf]S

PW

  are also solutions  (i.e.  
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(saw this in “switched order” in Cocktail Party raw, recon’d)

FastICA:    appears to order in terms of “how non-Gaussian”

ICA, Algorithm (cont.)

Identifiability problem 2:  Can’t find scale of elements of  
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Since for a (full rank) diagonal matrix  
[image: image45.wmf]D




(pre-multiplication by  
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  is scalar mult’n of rows)



(post-multiplication by  
[image: image47.wmf]D

  is scalar mult’n of columns)

for each col’n,   
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So  
[image: image50.wmf]S
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  and  
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  are also solutions

(also saw this in “inversion” in Cocktail Party raw, recon’d)

ICA, Algorithm (cont.)

Signal Processing Scale identification:  (Hyvärinen and Oja)


Choose scale so each signal 
[image: image52.wmf])
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(preserves energy along rows of data matrix)

Explains “same scales” in Cocktail Party Example

Again view raw data, ICA decomp.
ICA and non-Gaussianity

For indep., non-Gaussian, stand’zed, r.v.’s:     
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projections “farther from coordinate axes” are “more Gaussian”:

For the dir’n vector  
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(thus  
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ICA and non-Gaussianity (cont.)

Illustrative examples:

Assess normality with Q–Q plot,

scatterplot of “data quantiles” vs. “theoretical quantiles”
connect the dots of  
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  and  
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ICA and non-Gaussianity  (cont.)

Q-Q Plot (“Quantile – Quantile”, can also do “Prob. – Prob.”):

Assess variability with overlay of simulated data curves [toy e.g.]

E.g. Weibull(1,1)   (= Exponential(1))   data (
[image: image64.wmf]500
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-
Gaussian dist’n is poor fit (Q-Q curve outside envelope)


-
Pareto dist’n is good fit (Q-Q curve inside envelope)

· Weibull dist’n is good fit (Q-Q curve inside envelope)

· Bottom plots are corresponding log scale versions

ICA and non-Gaussianity  (cont.)

Illustrative examples (
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a. Uniform marginals [graphic]

-
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    very poor fit (Uniform  “far from” Gaussian)


-
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    much closer?   (Triangular closer to Gaussian)


-
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    very close, but still have stat’ly sig’t difference


-
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    all differences could be sampling variation

ICA and non-Gaussianity  (cont.)

Illustrative examples (
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b. Exponential marginals  [graphic]
· still have convergence to Gaussian, but slower

(“skewness” has stronger impact than “kurtosis”)

· now need  
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  to see no difference

c. Bimodal marginals  [graphic]
· Similar lessons to above

ICA and non-Gaussianity  (cont.)

Summary:

For indep., non-Gaussian, stand’zed, r.v.’s:     
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projections “farther from coordinate axes” are “more Gaussian”

Conclusions:

i. Usually expect “most projections are Gaussian”

ii. Non-Gaussian projections (target of ICA) are “special”

iii. Are most samples really “random”???   (could test???)

iv. High dimensional space is a strange place 

ICA Toy Examples

E.g.  Two sine waves    [combined graphic]
· Scatterplots show “time series structure”(not “random”)

· Since have exactly doubled the frequency

· PCA finds wrong direction

· Sphering is enough to solve this (“orthogonal to PCA”)

· So ICA is good  (note:  “flip”, and “constant signal power”)

· ICA works even without “honest joint distribution”

ICA, Toy Examples  (cont.)

E.g.  Sine wave and Gaussian noise  [combined graphic]
· PCA finds “diagonal of parallelogram”

· Sine is all in one (since “greatest variability” in that dir’n) 

· but still “wiggles”  (noise adds to “greatest variation”)

· ICA gets it right

· but magnifies the noise

ICA, Toy Examples  (cont.)

E.g.  Two realizations of Gaussian noise   [combined graphic]
· PCA finds “axis of ellipse”  (happens to be “right”)

· Note even “realization” of noise is right

· Since that drives PC directions

· ICA is “wrong”  (different noise realization)
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