
ORIE 779:    Functional Data Analysis 
 

Note:  time to schedule remaining Student Presentations 
 

 
From last meeting 

 
Independent Component Analysis 
 
Idea:  Find “directions that maximize independence” 
 
Studied:   
 

- Toy signal processing examples 
 

- Toy FDA examples 
 

- Local minima & non-linearities 



Last Time:  Careful look at Kurtosis 
 
 
Recall for standardized (mean 0, var 1) data:   nZZ ,...,1 , 
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- for  )1,0(~ NZi ,      Kurtosis  =  0 

 
- Kurtosis “large” for high peak, low flanks, heavy tails? 

 
- Kurtosis “small” for low peak, high flanks, light tails? 

 
- Can show    Kurtosis    -2    (point masses at +-1) ≥

 
- Thus very “asymmetric”?   (see above examples) 

 



Last Time:  Careful look at Kurtosis (cont.) 
 
 
E.g. three point distribution, with probability mass function: 
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Some simple Calculations: 
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Last Time:  Careful look at Kurtosis (cont.) 
 
 
Special Cases:    [graphic] 
 
 -   (no weight in middle),    Kurtosis = -2   (minimum) 0=w
 
 -   (uniform),    Kurtosis = -1.5 3/1=w
 
 -     Kurtosis = 0,    (closest to Gaussian?) 3/2=w
 
 -     (heavy tails),    Kurtosis > 0,   (finally positive) 3/2>w
 
 -     (2 outliers),    Kurtosis very large 1≈w
 
 
Note strong asymmetry in Kurtosis  
 



Last Time:  Careful look at Kurtosis (cont.) 
 
 
Aapo Hyvärinen comments: 
 
 
Solve asymmetry problem with “different nonlinearities”, 
 
i.e. replace absolute kurtosis  =   3)( 4 −ZwE t    with: 
 

1. “tanh”:    
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Last Time:  Careful look at Kurtosis (cont.) 
 
Comparison via 3 point example:   [graphic] 
 
 - upper left:    noncomparable scales 
 
 - upper right:    max rescaling is better 
 

- tanh and gaus “less asymmetric” than A. Kurt. 
 
 - lower left:    still shows all are asymmetric 
 
 - lower right:    “best scale” 
 

- A. Kurt. has pole at left, but “best for small ” w
 

- tanh and gaus have different zeros than A. Kurt. 



ICA, Toy Examples Revisited (cont.) 
 
 
E.g. Parabs Up and Down   (two distant clusters) 
 
 
Tanh:   [graphic] 
 

- Only IC2 finds an outlier 
 

- IC1 and IC3 have kurt. < 0 
 

- IC3  finds most of 2 clusters 
 

- but not so well as PC1 
 
 



ICA, Toy Examples Revisited (cont.) 
 
 
Gaus:   [graphic] 
 

- IC1 is classical “heavy tail kurtosis” 
 

- IC2 nicely finds clusters 
 

- IC3 is another bimodal direction (no insights about data) 
 
 
 
Conclusion:   tanh and gaus work as expected, and are useful 
 
 



Big Picture View of Course Material 
 
 
Recall 2 vital concepts: 
 
 
 

I. Data Representation & Conceptualization  
 
 
 
II. Understanding “Population Structure” 

 
 



Big Picture View of Course,   Data Representation 
 
 
 
  Object Space      Feature space ↔
 
 

Curves        Vectors 
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One to one mapping couples visualization in Object Space, with 

statistical analysis in Feature Space 
 



Big Picture View of Course,    Data Conceptualization 
 
 

Feature space                         Point Clouds ↔
 
 
   Vectors 
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[Spinning Point Cloud Graphic]    . 
 
 



Big Picture View of Course, Population “Structure” 
 
 
Main Idea:  “analyzing” populations of complex objects 
 
 
2 common major goals: 
 
 

I. Understanding “population structure”. 
- “visualization” 
- “intuition” 

 
 

II. Statistical Classification, i.e. Discrimination 
- put into “known groups”, based on “training data” 
- e.g. disease diagnosis 

 



Statistical Classification, i.e. Discrimination 
 
Interesting Example:      
 

Corpora Callosa data, Recall from Lecture 01-21.02 
 
Special thanks to G. Gerig and S. Ho, UNC Computer Science 
 
Reference: 
 
Kelemen, A., Szekely, G. and Gerig, G. (1997) Three 

dimensional model-based segmentation, TR-178 Technical 
Report Image Science Lab, ETH Zurich. 

 
 
Data Objects:  boundaries of “segmented” corpora callosa 
 
 



Recall Corpora Callosa Data 
 
 
Data Curves   [example] 
 
 
Feature vectors: use coefficients of Fourier boundary 

representation, 80=d  
 
 
Object Space view:  can either overlay, or show sequentially 
 
 
In either case:  hard to see “population structure” 
 
 



Recall Corpora Callosa PCA 
 
Raw Data                               Modes of shape variation? 
 
 
PC1: 
 

- “overall bending” 
 
PC2: 
 

- Rotation of right end,  “Sharpening” of left end 
 
PC3: 
 
 - “thin” vs. “thick” 
 



Discrimination for Corpora Callosa Data 
 
 
Have 2 sub-populations: 
 
Schizophrenics,    40=n [sub-population of curves] 
 
Controls,    31=n [sub-population of curves] 
 
 
 
Goal 1:    See difference between populations?    (???) 
 
 
Goal 2:   Given new shape: assign to a group 
 

“automatic diagnosis (of schizophrenia)” 
 



Discrimination for Corpora Callosa Data (cont.) 
 
Very simple approach:  
 

- Colored Parallel Coordinate view of data [graphic] 
 

- Look for diff’nce between  Schizophrenics  and  Controls 
 

- Major “overplotting” problems (Schizos last, so “on top”) 
 

- No useful separation, since view is “too simple” 
 

- Only looks in limited “coordinate directions” 
 

- Perhaps “better separation” in other directions 
 

- Caution: bottom show non-Gaussian 
 



Discrimination for Corpora Callosa Data (cont.) 
 
 
Another simple approach: 
 

- for “widely separated data”   [toy example] 
 
- find “skewer through meatballs” 

 
- using difference vector between means  [toy example] 

 
- Projection “separates sub-populations” 

 
 
Alternate view: 
 

-   discrimination boundary is “orthogonal hyperplane” 
 



Discrimination for Corpora Callosa Data (cont.) 
 
 
Problem for Corpora Callosa Data: 
 

- Subpopulation means nearly same 
 

- Square of Difference, as Fraction of Total  <  0.1% 
 

- Thus effective discrimination must account for “spread” 
 

- Perhaps can exploit covariance structure? 
 
 



Discrimination for Corpora Callosa Data (cont.) 
 
Another simple approach:   PCA 
 

- Again hope for “skewer between meatballs” 
 

- This time focusing on covariance, not mean [toy example] 
 

- Doesn’t work for Corpora Callosa Data 
 

Recall:      PC1      PC2      PC3 
 

- Recall PCA only feels “maximal variation” 
 

- Different from “separating subsamples” 
 

- PCA doesn’t even use “class label information” 
 



Discrimination for Corpora Callosa Data (cont.) 
 
 
Another view of PCA problem:    [toy data set] 
 

- “maxim’l variation” can be different from “good separation” 
 

- so PCA fails [PCA] 
 

- mean difference better, not adequate    [mean diff.] 
 

- really want to work in “covariance structure” 
 
 
Alternate Approach:   
 

- modify mean difference, using “covariance structure”  
 

- called Fisher Linear Discrimination 



Fisher Linear Discrimination 
 
 
Careful development: 
 
 
 
Mathematical Notation (vectors with dimension ): d
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Fisher Linear Discrimination (cont.) 
 
 
Covariances:   tjjj XX )()()( ~~ˆ =Σ ,   for  2,1=j     (outer products) 
 
Based on “normalized, centered data matrices”: 
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note:  Use “MLE” version of normalization, for simpler notation 
 
 
 
 
Terminology (useful later):       are “within class covariances” )(ˆ jΣ
 
 



Fisher Linear Discrimination (cont.) 
 
Major assumption:  Class covariances are same (or “similar”) 
 
 
Good estimate of “common within class covariance”? 
 

(recall [toy example]) 
  
 
Pooled (weighted average) within class covariance: 
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for the “full data matrix”: 
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Fisher Linear Discrimination (cont.) 
 
 
 
Note:    is similar to    from before wΣ̂ Σ̂
 
 

- i.e.  “covariance matrix ignoring class labels” 
 
 

- important difference is “class by class centering” 
 

(recall [toy example]) 
  
 
 
 



Fisher Linear Discrimination (cont.) 
 
 
Simple way to find “correct covariance adjustment”: 
 
Individ’ly transform subpop’ns so “spherical” about their means 
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(upper right in [toy example]) 

 
then: 

“best separating hyperplane” 
 

is 
 

“perpendicular bisector of line between means” 



Fisher Linear Discrimination (cont.) 
 
 
So in transformed space, the separating hyperlane has: 
 

Transformed normal vector: 
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Equation: 

{ }TFLDTFLDTFLD nnyy ,,: µ=  
 

(lower right in [toy example]) 
 



Fisher Linear Discrimination (cont.) 
 
Thus discrimination rule is: 
 
 
 Given a new data vector  0X ,    Choose Class 1 when: 

( ) 0
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i.e. (transforming back to original space) 

( ) ( )0 ( ) TFLD
w

TFLD
w

TFLD
w nnX 2/12/12/1 ˆ,ˆˆ, −− ΣΣ≥Σ µ  

FLDFLDFLD nnX ,,0 µ≥  
 
where: 

( ) ( ) ( ))2()1(12/1 ˆˆ XXnn w
TFLD

w
FLD −Σ=Σ=

−−  

( ) 





 +=Σ= )2()1(2/1

2
1

2
1ˆ XX

TFLD
w

FLD
µµ  



Fisher Linear Discrimination (cont.) 
 
 
 
Thus (in original space) have separating hyperplane with: 

(lower right in [toy example]) 

 
 
Normal vector:    FLDn  
 
 
Intercept:    

FLD
µ  

 

 
 

 
 


