
From Last Meetings

Developed Mathematics behind PCA:

- Review of Linear Algebra and Multivariate Probability

- Analyzed PCA, using Eigenvalue decomp. of Σ̂

- Explored “Dual PCA problem”,for faster computation

- Only treated “ X~ full rank” case

Summary of PCA dual problem

Recall “data matrix” notation: ()
ndn XXXX

n
X

×
−−

−
= !11

1~

Recall: t
dd XX ~~ˆ =Σ × has the eigenvalue decomp. tBDB=Σ̂

The “dual eigen problem” replaces columns by rows in X~ :

Let XX t
nn

~~* =Σ × , and find *B , *D , so that tBDB **** =Σ

(now only dn < dimensional)

Summary of PCA dual problem (cont.)

Now suppose know sol’n to dual problem, i.e. know *B and *D

How do we find B and D?

Solution 1: Assume















=

n

D

λ

λ

0

01

* " is of full rank,

i.e. 01 >≥≥ nλλ ! , i.e. X~ and Σ̂ are of full rank

Summary of PCA dual problem (cont.)

Then,

























=





= ×

×

000

0

0

0

00

00

0

1

*

!

"

"#

#"

"

!

nnn

dd

D
D

λ

λ

And first n cols of B are given by () 2/1**~ −
× = DBXB nd

$
,

PCA Dual Problem (cont.)

Solution 2: For















=

n

D

λ

λ

0

01

* " not of full rank,

Similar, but now work with () ()XrankDrankn ~' * =≤

And find only “1st 'n eigencomponents”

PCA dual problem (cont.)

Still have:

- First 'n eigenvectors are '1 ,..., nλλ

- First 'n cols of B are () 2/1

'

~ −
× = DBXB nd

%%$

where:

'nnB ×

%
 = first 'n cols of *B
















=×

'

1

''

0

0

n

nnD

λ

λ
"

%

PCA dual problem (cont.)

Then can fill in other eigenvectors:

- Gram-Schmidt orthogonalization?

- More efficient method?

Or, maybe only care about those where 0>jλ
(i.e. directions where we have data?)

PCA Time Trials

What is the gain in speed? Time trial comparisons

For 500,...,100,50,20,10=d , and for 500,...,100,50,20,10=n ,

Timed versions of PCA (using Matlab’s function eigs)

Trial 1: Direct PCA, all d eigenvectors (recall dd×Σ).
show PCAtimest1p4.ps

PCA Time Trials (cont.)

Top Row: Views of times (in seconds)

Problem: Smaller times “compressed into 0”

Bottom Row: Different scale: 10log times vs. 10log d & n

1st column: overall surface

2nd column: slice in n direction

3rd column: slice in d direction

PCA Time Trials (cont.)

Trial 1: Direct PCA, all d eigenvectors (recall dd×Σ)

- nearly no dependence on n

- since need to compute all d

- grows like ()3dO ? (for larger d ?)

- since need to solve dd × system for each of d e. v. s

- limited relevance if only need 1st n

PCA Time Trials (cont.)

View 2: Compute for only non-zero eigenvalues

(generally 1−n since mean is subtracted for PCA)

a. Direct PCA
Show PCAtimest1p1.ps

- for each d , increases in n, until level d is passed

- since are computing more eigenvectors

- for each n, 1st inc’s rapidly in d , slowly after d is passed

- since for dn > only harder expense is covariance calc.

PCA Time Trials (cont.)

b. Dual PCA
Show PCAtimest1p2.ps

- Times are transpose of (a).

- Since “swap rows and columns” means “ nd ↔ ”
Flip back and forth

PCA Time Trials (cont.)

c. Chosen PCA (to min size of computed eigen-analysis)
Show PCAtimest1p3.ps

- Times are essentially mins of (a) and (b)
Flip back and forth between last 3

- Symmetric in d and n

- Worst case is nd = (direct and dual equally hard)

- As expected from theory

PCA Time Trials (cont.)

How useful is this?

- For dn ≈ , no benefit

- For n (d) = 100, & d (n) = 500, factor of ~20

- For n (d) = 50, & d (n) = 100, factor of ~10

- For n or d <= 200, time <= 10 sec’s, so not major deal?

PCA Time Trials (cont.)

View 3: Compute only first 8 eigenvalues and vectors
Show PCAtimest1p5.ps, PCAtimest1p6.ps, PCAtimest1p7.ps

- similar lessons

- overall times <= 30 secs

- for n or d <= 200, times <= 5 (at worst) 10 sec’s

- trivial except for simulation

Explore Rescalings

Background: PCA finds “direction of greatest variability”,

by eigenanalysis of covariance matrix: t
dd XX ~~ˆ =Σ ×

where ()
ndn XXXX

n
X

×
−−

−
= !11

1~

When does this make sense?

Classical Multivariate Analysis: Not when “units are different”
(e.g. 1X in m, 2X in sec, 3X in $)

Explore Rescalings (cont.)

An FDA example: “M-reps” (some “angles” and some lengths)
Show GreggTracton.html

Classical solution; transform to “unit free” scale

i.e. replace covariance matrix with “correlation matrix”

() ()
()

()
() () 


















=Σ

−

−

1,,

,

1,

,,1

11

1

12

121

nnn

nn

n

XXXX

XX

XX

XXXX

ρρ
ρ

ρ
ρρ

!

""#

#"

!

where () ()
() ()ji

ji
ji XX

XX
XX

varvar

,cov
,

⋅
=ρ

Explore Rescalings (cont.)

Correlation matrix:

Use same form for either “theoretical” or “empirical” versions

Matrix version:

DDΣ=Σ ,

where

()

()



















=

nXsd

Xsd
D

1
0

0
1

1

!

#"#

!

Explore Rescalings (cont.)

Standardized data version: t
dd ZZ ~~=Σ ×

where () ()
nd

n

Xsd

XX

Xsd

XX

n
Z

×




 −−

−
=

11

1

1

1~
!

Shows “unit free” aspect of this transformation

Possible drawback: gives a “distortion of point cloud of data”,

So “direction of greatest variability” is different (better? worse?)

Explore Rescalings (cont.)

E.g. 1: Familiar family of parabolas
Show CurvDat\ParabsCurvDat.ps and CurvDat\ParabsCurvDatCorr.ps

- very similar

- reason: cov. matrix ≈ corr. matrix

- I.e. coordinate-wise variances approx. same

Explore Rescalings (cont.)

E. g. 2: 3 “independent bumps”, in coordinate axis directions
Show CurvDat\Bumps3CurvDat.ps and CurvDat\Bumps3CurvDatCorr.ps

- Covariance PC 1: Finds first bump

- Covariance PC 2 & 3: Finds remaining bumps

- Corr. PC: Power of bumps spread beyond 1st 4!

- This can make a big difference!

- Which is “right”????

- Power plot: big difference in eigenvalues
(symbols - raw scale, lines – standardized scale)

Explore Rescalings (cont.)

E.g. 3: 2 correlated bumps, 3rd independent:
Show CurvDat\Bumps2CurvDat.ps and CurvDat\Bumps2CurvDatCorr.ps

- similar lessons

E.g. 4: 3 correlated bumps
Show CurvDat\Bumps1CurvDat.ps and CurvDat\Bumps1CurvDatCorr.ps

- now Corr. PCA not quite so bad?

- Just luck?

Explore Rescalings (cont.)

E.g. 5: Corpus Callosum Data:
Show CorpColl\CCFrawAlls3.mpg

Recall direct PCA showed interesting population structure:
Show CorpColl\CCFpcaSCs3PC1.mpg, CorpColl\CCFpcaSCs3PC2.mpg, and CorpColl\CCFpcaSCs3PC3.mpg

Expect difference with “correlation PCA”? Parallel coordinates:
Show CorpColl\CCFParCorAlls3.ps

- Coordinate wise variances very different

- So expect large difference

Explore Rescalings (cont.)

Correlation PCA:
Show CorpColl\CCFpcaSCs3PC1Corr.mpg, CorpColl\CCFpcaSCs3PC2Corr.mpg, CorpColl\CCFpcaSCs3PC3Corr.mpg,

- found only “pixel effect directions”

- since these “have been magnified” (see Par. Coord’s)

- similar effect to Fisher Linear Disc.
Show CorpColl\CCFfldSCs3mag.mpg

- Correlation PCA clearly inferior here

Explore Rescalings (cont.)

Summary:

- no apparent “general solution”

- depends on context

- sometimes “unit free” aspect is dominant, use Corr.

- other times Corr. PCA gives “useless distortion”

Future plans:
1. Do ICA?
2. Goodness of approximation???
3. Maths for Fisher linear discrimination
4. Polynomial embeddings and SVM discrimination
5. Validation for discrimination (various ways)
6. Internet traffic data?

