From Last Meetings
Developed Mathematics behind PCA:

- Review of Linear Algebra and Multivariate Probability
- Analyzed PCA, using Eigenvalue decomp. of %
- Explored “Dual PCA problem”, for faster computation

- Only treated “X full rank” case



Summary of PCA dual problem

: : ~ 1 _ _
Recall “data matrix” notation: X = X, —X - X, =X
/n _1(—1 - - n _)dxn
Recall: 5, ,=XX"' has the eigenvalue decomp. 2 =BDB!

The “dual eigen problem” replaces columns by rows in X :
Let = =X'X, andfind B", D", sothat =" =B'D"B"

(now only n<d dimensional)



Summary of PCA dual problem (cont.)

*

Now suppose know sol’'n to dual problem, i.e. know B™ and D

How do we find B and D?

O
- nis of full rank,

[] :
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ie. A, =---2A >0, ie. X and £ are offull rank

Solution 1: Assume D =



Summary of PCA dual problem (cont.)
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And first n cols of B are givenby B, =XB"(D")"”,

dxn



PCA Dual Problem (cont.)

g %0

Solution2: For D'=p .  not of full rank,

0 AL

Similar, but now work with n'< rank(D*): rank()?)

And find only “1%' n' eigencomponents”



PCA dual problem (cont.)

Still have:

- First n' eigenvectors are A,..., A,

- First n' colsof B are B, =XB(D)"”
where:
B... = first n' colsof B’
L
Do =0 N




PCA dual problem (cont.)

Then can fill in other eigenvectors:
- Gram-Schmidt orthogonalization?

- More efficient method?

Or, maybe only care about those where A; >0
(l.e. directions where we have data?)



PCA Time Trials

What is the gain in speed? Time trial comparisons

For d =10,20,50,100,...,500, and for n=10,20,50,100,...,500,

Timed versions of PCA (using Matlab’s function eigs)

Trial 1: Direct PCA, all d eigenvectors (recall Z,,,).

show PCAtimestlp4.ps



PCA Time Trials (cont.)

Top Row: Views of times (in seconds)
Problem: Smaller times “compressed into 0”

Bottom Row: Different scale: log,, times vs. log,, d & n

1% column: overall surface
2" column: slicein n direction

3" column: slicein d direction



PCA Time Trials (cont.)

Trial 1: Direct PCA, all d eigenvectors (recall Z,,,)
- nearly no dependence on n
- since need to compute all d
- grows like O(d®)? (for larger d?)
- since need to solve dxd systemforeachof d e.v.s

- limited relevance if only need 1% n



PCA Time Trials (cont.)

View 2: Compute for only non-zero eigenvalues

(generally n—1 since mean is subtracted for PCA)

a. Direct PCA

Show PCAtimestlpl.ps

for each d, increases in n, until level d is passed

since are computing more eigenvectors

for each n, 1% inc’s rapidly in d, slowly after d is passed

since for n > d only harder expense is covariance calc.



PCA Time Trials (cont.)

b. Dual PCA

Show PCAtimestlp2.ps

- Times are transpose of (a).

- Since “swap rows and columns” means “d - n”

Flip back and forth



PCA Time Trials (cont.)

c. Chosen PCA (to min size of computed eigen-analysis)

Show PCAtimest1p3.ps

- Times are essentially mins of (a) and (b)

Flip back and forth between last 3

- Symmetricin d and n
-  Worst case is d =n (direct and dual equally hard)

- As expected from theory



PCA Time Trials (cont.)

How useful is this?
- For n=d, no benefit
- For n(d) =100, & d (n) =500, factor of ~20
- For n(d)=50, & d (n) =100, factor of ~10

- For nord <=200, time <= 10 sec’s, so not major deal?



PCA Time Trials (cont.)

View 3: Compute only first 8 eigenvalues and vectors

Show PCAtimest1p5.ps, PCAtimestlp6.ps, PCAtimestlp7.ps

similar lessons

overall times <= 30 secs

for nord <=200, times <= 5 (at worst) 10 secC’s

trivial except for simulation



Explore Rescalings

Background: PCA finds “direction of greatest variability”,

N

by eigenanalysis of covariance matrix: 2., = XX

where X =

When does this make sense?

Classical Multivariate Analysis: Not when “units are different”
(e.g. X, inm, X,insec, X,in$)



Explore Rescalings (cont.)

An FDA example: “M-reps” (some “angles” and some lengths)

Show GreggTracton.html

Classical solution; transform to “unit free” scale

l.e. replace covariance matrix with “correlation matrix”

1 p(xl’XZ) p(xl’xn) H
splax) D
| p(Xo X,o)E

ﬁo(xn,x) o opux) 1 f

cov(X;, X ;)
var(X, ) ar(X ;)

where p(Xi,Xj)



Explore Rescalings (cont.)
Correlation matrix:

Use same form for either “theoretical” or “empirical” versions

Matrix version:

2 =D2D,

where




Explore Rescalings (cont.)

Standardized data version: Saxq =ZZ"

where 7=_L Fa~% X, =X
«/n—l% %xn

Shows “unit free” aspect of this transformation

Possible drawback: gives a “distortion of point cloud of data”,

So “direction of greatest variability” is different (better? worse?)



Explore Rescalings (cont.)

E.g. 1. Familiar family of parabolas

Show CurvDat\ParabsCurvDat.ps and CurvDat\ParabsCurvDatCorr.ps
- very similar
- reason:. cov. matrix = corr. matrix

- l.e. coordinate-wise variances approx. same



Explore Rescalings (cont.)

E. g. 2. 3 “independent bumps”, in coordinate axis directions

Show CurvDat\Bumps3CurvDat.ps and CurvDat\Bumps3CurvDatCorr.ps

- Covariance PC 1: Finds first bump

- Covariance PC 2 & 3: Finds remaining bumps

- Corr. PC: Power of bumps spread beyond 1% 4!
- This can make a big difference!

- Which is “right”????

- Power plot: big difference in eigenvalues
(symbols - raw scale, lines — standardized scale)



Explore Rescalings (cont.)

E.g. 3: 2 correlated bumps, 3" independent:

Show CurvDat\Bumps2CurvDat.ps and CurvDat\Bumps2CurvDatCorr.ps

- similar lessons

E.g. 4. 3 correlated bumps

Show CurvDat\Bumps1CurvDat.ps and CurvDat\Bumps1CurvDatCorr.ps

- now Corr. PCA not quite so bad?

- Just luck?



Explore Rescalings (cont.)

E.g. 5. Corpus Callosum Data:

Show CorpCol\CCFrawAlls3.mpg

Recall direct PCA showed interesting population structure:

Show CorpColNCCFpcaSCs3PC1.mpg, CorpColN\CCFpcaSCs3PC2.mpg, and CorpColNCCFpcaSCs3PC3.mpg

Expect difference with “correlation PCA”? Parallel coordinates:

Show CorpCol\CCFParCorAlls3.ps

- Coordinate wise variances very different

- S0 expect large difference



Explore Rescalings (cont.)

Correlation PCA:

Show CorpColNCCFpcaSCs3PC1Corr.mpg, CorpColNCCFpcaSCs3PC2Corr.mpg, CorpColN\CCFpcaSCs3PC3Corr.mpg,

- found only “pixel effect directions”
- since these “have been magnified” (see Par. Coord’s)

- similar effect to Fisher Linear Disc.

Show CorpCol\CCFfldSCs3mag.mpg

- Correlation PCA clearly inferior here



Explore Rescalings (cont.)

Summary:

no apparent “general solution”

depends on context

sometimes “unit free” aspect is dominant, use Corr.

other times Corr. PCA gives “useless distortion”



Future plans:

Do ICA?

Goodness of approximation???

Maths for Fisher linear discrimination
Polynomial embeddings and SVM discrimination
Validation for discrimination (various ways)
Internet traffic data?
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