
From Last Meetings

Developed Mathematics behind PCA:

- Review of Linear Algebra and Multivariate Probability

- Analyzed PCA, using Eigenvalue decomp. of  Σ̂

- Explored “Dual PCA problem”,for faster computation

- Only treated “ X~   full rank” case



Summary of PCA dual problem

Recall “data matrix” notation:   ( )
ndn XXXX
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×
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Recall:    t
dd XX ~~ˆ =Σ ×     has the eigenvalue decomp.    tBDB=Σ̂

The “dual eigen problem” replaces columns by rows in X~ :

Let    XX t
nn

~~* =Σ × ,    and find *B , *D ,  so that  tBDB **** =Σ

(now only dn <  dimensional)



Summary of PCA dual problem (cont.)

Now suppose know sol’n to dual problem, i.e. know *B  and *D

How do we find B and D?

Solution 1: Assume  
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* "  is of full rank,

i.e. 01 >≥≥ nλλ ! ,     i.e.   X~    and   Σ̂   are of full rank



Summary of PCA dual problem (cont.)

Then,   
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And first n cols of  B  are given by    ( ) 2/1**~ −
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PCA Dual Problem (cont.)

Solution 2:    For  
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* "  not of full rank,

Similar, but now work with  ( ) ( )XrankDrankn ~' * =≤

And find only “1st 'n   eigencomponents”



PCA dual problem (cont.)

Still have:

- First  'n   eigenvectors are   '1 ,..., nλλ

- First  'n   cols of  B  are   ( ) 2/1

'
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where:
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  =  first  'n   cols of  *B
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PCA dual problem (cont.)

Then can fill in other eigenvectors:

- Gram-Schmidt orthogonalization?

- More efficient method?

Or, maybe only care about those where  0>jλ
(i.e. directions where we have data?)



PCA Time Trials

What is the gain in speed?    Time trial comparisons

For  500,...,100,50,20,10=d ,  and for  500,...,100,50,20,10=n ,

Timed versions of PCA  (using Matlab’s function eigs)

Trial 1:  Direct PCA, all d  eigenvectors  (recall  dd×Σ ).
show PCAtimest1p4.ps



PCA Time Trials (cont.)

Top Row:    Views of times (in seconds)

Problem:    Smaller times “compressed into 0”

Bottom Row:    Different scale:    10log  times  vs.  10log  d  & n

1st column:    overall surface

2nd column:    slice in  n  direction

3rd column:    slice in  d   direction



PCA Time Trials (cont.)

Trial 1:  Direct PCA, all d  eigenvectors  (recall  dd×Σ )

- nearly no dependence on n

- since need to compute all d

- grows like ( )3dO ?    (for larger  d ?)

- since need to solve  dd ×   system for each of  d   e. v. s

- limited relevance if only need 1st n



PCA Time Trials (cont.)

View 2:    Compute for only non-zero eigenvalues

(generally 1−n   since mean is subtracted for PCA)

a. Direct PCA
Show PCAtimest1p1.ps

- for each  d ,  increases in n, until level d   is passed

- since are computing more eigenvectors

- for each  n, 1st inc’s rapidly in  d , slowly after d  is passed

- since for dn >  only harder expense is covariance calc.



PCA Time Trials (cont.)

b. Dual PCA
Show PCAtimest1p2.ps

- Times are transpose of (a).

- Since “swap rows and columns” means   “ nd ↔ ”
Flip back and forth



PCA Time Trials (cont.)

c. Chosen PCA (to min size of computed eigen-analysis)
Show PCAtimest1p3.ps

- Times are essentially mins of (a) and (b)
Flip back and forth between last 3

- Symmetric in  d   and  n

- Worst case is nd =   (direct and dual equally hard)

- As expected from theory



PCA Time Trials (cont.)

How useful is this?

- For  dn ≈ ,  no benefit

- For  n (d ) = 100,  &  d  (n) = 500,   factor of ~20

- For  n (d ) = 50,  &  d  (n) = 100,   factor of ~10

- For  n or d  <= 200, time <=  10 sec’s, so not major deal?



PCA Time Trials (cont.)

View 3:    Compute only first 8 eigenvalues and vectors
Show PCAtimest1p5.ps, PCAtimest1p6.ps, PCAtimest1p7.ps

- similar lessons

- overall times <= 30 secs

- for  n or d  <= 200,  times  <=  5  (at worst) 10 sec’s

- trivial except for simulation



Explore Rescalings

Background:   PCA finds “direction of greatest variability”,

by eigenanalysis of covariance matrix: t
dd XX ~~ˆ =Σ ×

where    ( )
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When does this make sense?

Classical Multivariate Analysis:  Not when “units are different”
(e.g.  1X  in m,  2X  in sec,  3X  in $)



Explore Rescalings (cont.)

An FDA example:  “M-reps”  (some “angles” and some lengths)
Show GreggTracton.html

Classical solution;  transform to “unit free” scale

i.e.  replace covariance matrix with “correlation matrix”
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Explore Rescalings (cont.)

Correlation matrix:

Use same form for either “theoretical” or “empirical” versions

Matrix version:

DDΣ=Σ ,

where
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Explore Rescalings (cont.)

Standardized data version: t
dd ZZ ~~=Σ ×

where    ( ) ( )
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Shows “unit free” aspect of this transformation

Possible drawback:  gives a “distortion of point cloud of data”,

So “direction of greatest variability” is different (better?  worse?)



Explore Rescalings (cont.)

E.g. 1:  Familiar family of parabolas
Show CurvDat\ParabsCurvDat.ps and CurvDat\ParabsCurvDatCorr.ps

- very similar

- reason:  cov. matrix  ≈  corr. matrix

- I.e.  coordinate-wise variances approx. same



Explore Rescalings (cont.)

E. g. 2:  3 “independent bumps”, in coordinate axis directions
Show CurvDat\Bumps3CurvDat.ps and CurvDat\Bumps3CurvDatCorr.ps

- Covariance PC 1:  Finds first bump

- Covariance PC 2 & 3:  Finds remaining bumps

- Corr.  PC:    Power of bumps spread beyond 1st 4!

- This can make a big difference!

- Which is “right”????

- Power plot:  big difference in eigenvalues
(symbols - raw scale,  lines – standardized scale)



Explore Rescalings (cont.)

E.g. 3:  2 correlated bumps, 3rd independent:
Show CurvDat\Bumps2CurvDat.ps and CurvDat\Bumps2CurvDatCorr.ps

- similar lessons

E.g. 4:  3 correlated bumps
Show CurvDat\Bumps1CurvDat.ps and CurvDat\Bumps1CurvDatCorr.ps

- now Corr. PCA not quite so bad?

- Just luck?



Explore Rescalings (cont.)

E.g. 5:  Corpus Callosum Data:
Show CorpColl\CCFrawAlls3.mpg

Recall direct PCA showed interesting population structure:
Show CorpColl\CCFpcaSCs3PC1.mpg, CorpColl\CCFpcaSCs3PC2.mpg, and CorpColl\CCFpcaSCs3PC3.mpg

Expect difference with “correlation PCA”?  Parallel coordinates:
Show CorpColl\CCFParCorAlls3.ps

- Coordinate wise variances very different

- So expect large difference



Explore Rescalings (cont.)

Correlation PCA:
Show CorpColl\CCFpcaSCs3PC1Corr.mpg, CorpColl\CCFpcaSCs3PC2Corr.mpg, CorpColl\CCFpcaSCs3PC3Corr.mpg,

- found only “pixel effect directions”

- since these “have been magnified” (see Par. Coord’s)

- similar effect to Fisher Linear Disc.
Show CorpColl\CCFfldSCs3mag.mpg

- Correlation PCA clearly inferior here



Explore Rescalings (cont.)

Summary:

- no apparent “general solution”

- depends on context

- sometimes “unit free” aspect is dominant, use Corr.

- other times Corr. PCA gives “useless distortion”



Future plans:
1. Do ICA?
2. Goodness of approximation???
3. Maths for Fisher linear discrimination
4. Polynomial embeddings and SVM discrimination
5. Validation for discrimination (various ways)
6. Internet traffic data?


