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Modern Dataset Features
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* High Dimensionality
* Microarray, image, ...
* Dimension reduction techniques
" Principle component analysis (PCA) — Pearson (1901)
= Partial least squares — Wold (1985)
» Canonical correlation analysis — Hotelling (1936)

* Sparsity
* Signal sparse ... most signal dimensions insignificant

* Sparsity constraints
* Sparse PCA
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M Data Matrix
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/one data object

Xy, X Xy, N

Xop oo X0 Xy, . .
e ) > dimension of

1 "~ data objects is d
de,l o -|Z<d_,1;|- « + Xin {_’

data matrix is a sample of n objects



E Principle Component Analysis
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Principle Component Analysis (PCA):
* Purpose: dimension reduction & visualization

* Goal: few linear combinations of the raw variables to explain majority
of the data variation

* Calculation: eigen-decomposition of sample covariance matrix

NG

As n— o0, d—>0o0, or d&n— o
 Consistency:p —0
« Strong Inconsistency: o —m/2
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PCA Asymptotics
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* PCA — very popular tool
= Offers useful insights
= Reveals simple low-dimensional structure in high-dimensional data

* Important to understand asymptotic properties of PCA
= Consistency
= Strong inconsistency
= Subspace consistency
» Studied through mathematical statistics



Asymptotic Settings
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Sample size n, dimension (# of variables) d

* Classical asymptotics:
d fixed and n—

* Random matrix asymptotics:
d/n— c, as n— o

* High Dimension, Low Sample Size (HDLSS) asymptotics:
n fixed and d—

10



M Eigen-Decomposition
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Assume that X,,..., X ~N(0, 2, )
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M Eigen-Decomposition
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Assume that X,,..., X ~N(0, 2, )
> =UAU"

* A=diag (A ..., Ag)
* U=[u; ..., uq]

Denote ﬁd =n'XX! where X=X,y X, ]

/\/\/\T

.3 =UAU
A ] A A
*A=diag (A ..., Ay)
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M Eigen-Decomposition
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Assume that X,,..., X ~N(0, 2, )
> =UAU"

* A=diag (A ..., Ag)
* U=[u; ..., uq]

Denote ﬁd =n'XX! where X=X,y X, ]
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M Eigen-Decomposition
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Assume that X,,..., X ~N(0, 2, )
> =UAU"

* A=diag (A ..., Ag)
* U=[u; ..., uq]

Denote ﬁd =n'XX! where X=X,y X, ]

Study angle (lAJj, u;)

19



E Information Contribution
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Contribution to consistency
* n: positive
* d: negative

 Spike size (e.g. A/ A,) : positive
= relative sizes of the leading eigenvalues

20



M Information Contribution
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Contribution to consistency
* n: positive
* d: negative
 Spike size (e.g. A/ A,) : positive
= relative sizes of the leading eigenvalues
Question:

* Interaction among the three informations €= Consistency of PCA???

21
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Spike Covariance Model
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 Johnstone (2001)
* General math description of m-component spike model

* Examples:
* m=1: single component spike model
- }\.,1 >> }LZNN 7\~le

* m>1: multi-component spike model

* multi-component with tiered eigen-values

23



M Single-Component Spike Model
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Example 1:
¢ }thda, }\,2: . 7\,d=1

* n~d’

e Sample index: y and Spike index: a

24



M Single Spike General Framework
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Classical asymptotics

e Anderson (1963): consistent when d fixed and n-> D— =0

Sample IndexY

}LlNda

n~dY

(0,0)

[N

Spike Index Ot

25



E Single Spike General Framework
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Classical asymptotics Ay ~d®
* Anderson (1963): consistent when d fixed and n-> o n~d?

Random matrix asymptotics
* Johnstone and Lu (2009): consistent when o=0, y> 1

Sample IndexY \
(BN
®

(0,0)

[N

Spike Index Ot
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M Single Spike General Framework
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Classical asymptotics Ay ~d®
* Anderson (1963): consistent when d fixed and n-> o n~d?

>

Random matrix asymptotics
* Johnstone and Lu (2009): consistent when o=0, y> 1

[EEN
¢

Index?Y

e Johnstone and Lu (2009): str. incon. when o=0, y<1 —=>

Sampl

(0,0)
Spike Index Ot

[N
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M Single Spike General Framework
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Classical asymptotics

* Anderson (1963): consistent when d fixed and n-> o R };11:(%,&
Random matrix asymptotics 4
* Johnstone and Lu (2009): consistent when a=0, y> 1 4
* Johnstone and Lu (2009): str. incon. when o=0,4< 1 ;;:i
S
* Nadler (2008) : boundary case a=0, y=1 ;
C
(0,0)

[N

Spike Index Ot
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M Single Spike General Framework

UNC, Stat & OR

Classical asymptotics Ay ~d®

* Anderson (1963): consistent when d fixed and n-> o n~d?
A

Random matrix asymptotics 4

* Johnstone and Lu (2009): consistent when o=0, y> 1

* Johnstone and Lu (2009): str. incon. when o=0, y< 1

Sample IndexY

 Nadler (2008) : boundary case a=0, y=1

(0,0)
HDLSS asymptotics /Suw*m/r)
 Jung and Marron (2009): consistent when a >1, y=0

>

29



M Single Spike General Framework
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Classical asymptotics
* Anderson (1963): consistent when d fixed and n-> o

Random matrix asymptotics
* Johnstone and Lu (2009): consistent when o=0, y> 1

* Johnstone and Lu (2009): str. incon. when o=0, y< 1
* Nadler (2008) : boundary case a=0, y=1

HDLSS asymptotics
* Jung and Marron (2009): consistent when o >1, y=0

Sample IndexY

xl’\“da
~Y
A n~d
®
-
(0,0) 1
Spike Index Ot

* Jung and Marron (2009): strongly inconsistent when o<1, y=0



M Single Spike General Framework
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Classical asymptotics Ay ~d®
* Anderson (1963): consistent when d fixed and n-> o n~d?

A
Random matrix asymptotics P
* Johnstone and Lu (2009): consistent when o=0, y> 1 .
* Johnstone and Lu (2009): str. incon. when o=0, y< 1 P

S

 Nadler (2008) : boundary case a=0, y=1 )

(0,0) ~—>

Spike Index

HDLSS asymptotics
* Jung and Marron (2009): consistent when o >1, y=0

* Jung and Marron (2009): strongly inconsistent when o

 Jung et al. (2010): boundary case a=1, y=0
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M Single Spike General Framework
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Classical asymptotics Ay ~d®
* Anderson (1963): consistent when d fixed and n-> o n~d?
A
Random matrix asymptotics P
* Johnstone and Lu (2009): consistent when o=0, y> 1 .
8 1st quadrant
* Johnstone and Lu (2009): str. incon. when o=0, y< 1 P
S
 Nadler (2008) : boundary case a=0, y=1 )
0.0) s
Spike Index Ot

HDLSS asymptotics
* Jung and Marron (2009): consistent when o >1, y=0

* Jung and Marron (2009): strongly inconsistent when a <1, y=0

 Jung et al. (2010): boundary case a=1, y=0

32



Single Spike General Framework
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Our result : bridge between settings

* consistent when o +y> 1

Sample IndexY \
(BN

0<a+y<1

(0’0) 1
Spike Index (L



M Single Spike General Framework
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Our result : bridge between settings

[EEN

* consistent when a +y> 1

* strongly inconsistent when o +y<l1

SampIqJ ndexy

(0,0) 1
Spike Index Ot



M Single Spike General Framework
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Our result : bridge between settings

* consistent when a +y> 1

* strongly inconsistent when o +y<l1

Sample IndexY

* boundary case ot+y=1

(0,0) 1
Spike Index Ot



M Multi-Component Spike Model

UNC, Stat & OR

Example 2: A

* A=¢c;d”, j<m, where c;> C; ;>0

Eigenvalues

1, 2, .. m m+l, ...,

Eigenvalue Index



M Multi-Component Spike Model
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Example 2: A

e \.=C.00% 1 > C.
A=C;d®, j<m, where ¢;> ¢; ;>0

Eigenvalues

e | 1

1, 2, .., m m+1, ...

Eigenvalue Index
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M Multi-Component Spike Model
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Example 2: A

e \.=C.00% 1 > C.
A=C;d®, j<m, where ¢;> ¢; ;>0

Eigenvalues

= }Lm+1:...: }\“d:]' 1

1, 2, .., m m+l, ...,

* n~(dY Eigenvalue Index



Multi-Component Spike Model
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Example 2: A

e )\.=c.a% 1 i i
A=C;d®, j<m, where ¢;> ¢; ;>0

Eigenvalues

= }Lm+1:...: }\“d:]' 1

1, 2, .., m m+l, ..., d

* n~(dY Eigenvalue Index

* Sample index: y and Spike index: a
= Common a for }; j=1,...,m

39



Subspace Consistency
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Introduced by Jung and Marron (2009) under HDLSS asymptotics

Similar eigenvalues:
* Eigen-direction not identified
* Focus on subspace (generated)

V\\F\
|

N

Subspace=span{uy, ...

As n— 00, d—o00, or d&n— o
* Subspace consistency:o —0

40



M Multi-Spike General Framework
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Classical asymptotics
* Anderson (1963): consistent when d fixed and n> o

n~dY

A

Sample Index?y

o— -
(0,0) 1 >
Spike IndexQL

41



M Multi-Spike General Framework
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Classical asymptotics
* Anderson (1963): consistent when d fixed and n> o

Random matrix asymptotics
* Paul (2007) : boundary case 0=0, y=1

n~d
A
1@
o
g
[7p]
(0.0) o==>

Spike IndexQL
42



M Multi-Spike General Framework
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Classical asymptotics
* Anderson (1963): consistent when d fixed and n> o

Random matrix asymptotics
* Paul (2007) : boundary case 0=0, y=1

HDLSS asymptotics A=C;d”
* Jung and Marron (2009): subspace consistent when o >1, y=0 n~dY
N
1 ®
oy
g
(0,0) —=>

Spike IndexQL
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M Multi-Spike General Framework
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Classical asymptotics
* Anderson (1963): consistent when d fixed and n> o

Random matrix asymptotics
* Paul (2007) : boundary case 0=0, y=1

HDLSS asymptotics A=C;d”
* Jung and Marron (2009): subspace consistent when o >1, y=0 n~dY
« Jung and Marron (2009): str. incon. when a <1, y=0 A
1 ®
oy




Multi-Spike General Framework
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Our result : bridge between settings

* consistent when o +y> 1, v>0

A=C;d”
n~dY

* strongly inconsistent when o +y<l1

Sample Index?y

0<a+y<i

0,0 T
Spike IndexQL
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Multi-Spike General Framework
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Our result : bridge between settings
* consistent when a +y> 1, y>0

* strongly inconsistent when.g +y<l1

Spike IndexQL
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M Assumptions on Spikes
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B
=R
S 5
E h+1i
[<b]

=2

LLl

1, 2, LXXY) bl, e , ah, (KXY bh ah+1, [XXY) bh+1

Eigenvalue Index

Assumption: as n = o

S W W |

B I R I I R ll[l g
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E Assumptions on Spikes
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@ 61 e e
R
S 9
E h+1i
(<b]
Ry
W o,
~1

1, 2, LXXY) bl, e , ah, (KXY bh ah+1, [XXY) bh+1

Eigenvalue Index

Assumption: as n = o

S W W |
* Ay e by D B

H r L)
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M Assumptions on Spikes
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Eigenvalues
=~
=5
+
&

1, 2, ..., by, ..., &, - b, an. ey bp.1

Eigenvalue Index

Assumption: as n = o

S W W |
¢ Ay e by D B

H r L)



M Assumptions on Spikes
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D 0
s o 1TT1 "7 "7 """
S
2 Onh+1
[<b]
=2
w9,
~1

1, 2, .., by, ..., @& - D, @nigs ooy by s oeee,

Eigenvalue Index

Assumption: as n = o

S W W |
¢ Ay e by D B

¢ gt By DB,

ro
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M Assumptions on Spikes
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Eigenvalues
&
=5
+
&

OR

Assumption: as n = o

S W W |
My e by, D B,

ah

ah+1’ L XY }’bh.l.l

(KXY bh a.h+1,

Eigenvalue Index

Moy vees by DO

9 6h+1

broy o e

ro
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M Assumptions on Spikes
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Eigenvalues
=~
=5
+
&

1, 2, ..., by, ..., &, - b, an. ooy by o oeee,

Eigenvalue Index

Assumption: as n = o

S W W |
¢ Ay e by D B

¢ g e My DBy
J VRN W £

ah+1’ °



M Assumptions on Spikes
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g O
s o
S
2 Onh+1
S
L e e [ B I
& ‘ | - -]

1, 2, .., b .., &, - b, an. ooy by s oeee,

Eigenvalue Index

Assumption: as n = o

S W W |
¢ Ay e by D B

¢ g e My DBy
J VRN W £

ah+1’ °

Rays 2oes b > B,



M Assumptions on Spikes
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S
o, |1

Eigenvalues
=~
=5
+
&
1
1

blY e , ah, (KXY bh ah+1,

Eigenvalue Index

Assumption: as n = o

S W W |

My e by, D B,
Mgy wees by, DB,
/NN V. & W

ah+1’ °

Aays iver by > B

e« lim §,,,/0,< 1



M Assumptions on Spikes
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173 8l

g

g 6h+1

>

W o,

~1
1, 2, ceey bl, 500 g ah, ceey bh ah+1, ceey bh+l ) eee ar, og
Eigenvalue Index

Assumption: as n = o
d ;\um+1, (XXX ;\dd ~1 * Ilm 6|'|'1/6| < 1
L] }.1, IXXY xbl 9 61 ( )\‘m+l/ ;\"m 9 O

¢ g e My DBy
J VRN W £

ah+1’ °

Aays iver by > B



M Subspace & Eigenvalue Consistency
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0 a<i<b
;Uj, =] = Dy

£ |

Subspace=span{u,, ..., Uy }

As n— o0, d—>o0, or d&n—

* Subspace consistency: o —0 ‘
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M Subspace & Eigenvalue Consistency

UNC, Stat & OR
0. a,.<i<b
;Uj, dp=) = Dy

{ |

Subspace=span{u,, ..., Uy }

As n— o0, d—>o0, or d&n—
* Subspace consistency: o —0 ‘

* Eigenvalue consistency: ij/ A1



M Main Theorem 1
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l
6h

6h+1

Oy

Eigenvalues

~1

Assumption: as

* Ifd/(nd,) »0, then

A
A

J

bh An+1s seey bh+1 oees s dpy eees  m m+l, ..., d

[XXY

Eigenvalue Index

. . A . .
is consistent and U; is subspace consistency, j<by,
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M Main Theorem 1
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l
6h

6h+1

oy
“’1 /

igenvalue Index

Eigenvalues

Assumption: as n —> o

A

* Ifd/(nd,) =0, then )/ is consistent and ﬁj IS subspace consistency, j<b,

* In addition d/(nd,,,,) = o, then Akja*s-' d/n and ( is strongly inconsistent, j>b;
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* If h=0, all /L\Jj are strongly inconsistent
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* Ifh=0, all ﬁj are strongly inconsistent

» If h=r, all ; are subspace consistent
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Remark
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* If h=0, all /L\JJ- are strongly inconsistent
 If h=r, all ﬁj are subspace consistent

* Ifa,=b,, subspace consistency becomes consistency (Example 2)

Spike IndexQL



Remark
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» [fh=0, all ﬁj are strongly inconsistent
» If h=r, all ; are subspace consistent
* If a,=b,, subspace consistency becomes consistency (Example 2)

* For fixed n and d - oo, condition [im §,,,/d, < 1 should be strengthened to lim §.,,/6.= 0



E Main Theorem 2
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Boundary case for single spike model

Assumption: as n- oo

Ay >> A== Ay =1



Main Theorem 2
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Boundary case for single spike model

Assumption: as n- oo

Ay >> A== Ay =1

e d/(nhy)—> ¢

(010) 1
Spike Index Ol



M Main Theorem 2

UNC, Stat & OR
Boundary case for single spike model

Assumption: as n- oo
M >> A= =0 =1
* d/(nA))—>c
Result

. Akll A —>1+cC, and nAkj/d =1, j>1,

(0,0)

Spike Index Ol
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M Main Theorem 2
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Boundary case for single spike model

Assumption: as n- oo

Ay >> A== Ay =1

e d/(nhy)—> ¢

(0,0) 1
Result Spike Index O

. Akll A —>1+cC, and nAkj/d =1, j>1,

* [< Oy, up>[251/(14c)



M Main Theorem 2
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Boundary case for single spike model

Assumption: as n- oo

Ay >> A== Ay =1

e d/(nhy)—> ¢

(0,0) 1
Result Spike Index O

. Akll A —>1+cC, and nAkj/d =1, j>1,
* [< Oy, up>[251/(14c)

« i, j>1, are strongly inconsistent with convergence rate (n/d)'?
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M Single-Component Spike Model
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Recall Example 1:
= }thda, >\,2: . )Ldzl

* Spike index: o



E Sparse PCA
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Johnstone and Lu (2009)
* PCA strongly inconsistent 1f and only 1f d/n— o

* But sparse PCA is consistent

Jung and Marron (2009)
« HDLSS: n fixed and d—

« PCA consistent when o >1
« PCA strongly inconsistent when o<1

 Performance of PCA under the sparsity assumption???
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Sparsity Assumption

[dF]
(—k—\
*u,~(1,...,1,0,...,0)

* [dP ]: the integer part of dP

* 0< B< 1: sparsity index

73



m Sparse PCA In HDLSS Settings
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Conventional PCA
* Consistent when o, >1, 0<p<1

Sparsity Index(j

0<p<o<i

H.
A4

0 02 04 06 08 1
Spike Index o
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Sparse PCA in HDLSS Settings
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Conventional PCA
* Consistent when o >1, 0<p<1 1

* Strongly inconsistent when a <1, 0<p<1 \0).7
05

Sparsit Index[}

0 02 04 06 08 1
Spike Index o
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m Sparse PCA in HDLSS
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Conventional PCA
* Consistent when o, >1, 0<p<1

* Strongly inconsistent when a <1, 0<p<1

Sparsity Indexf3

Sparse PCA
* Consistent when 0<B<a<1 and a >1, 0<p<

™ 02 04 06 08 1
Spike Index o
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Sparse PCA in HDLSS Settings

UNC, Stat & OR

Conventional PCA
* Consistent when a >1, 0<p<1 1
o
* Strongly inconsistent when a <1, 0<p<1 207
€ 05
Sparse PCA &
- 0.3
Consistent when 0<p<o<1 and a >1, 0<p<1 oL
/'1
* Strongly inconsistent when 0<a < 3 <1 0] N
02 04 06 08 1
Spike Index o



m Sparse PCA in HDLSS Settings

UNC, Stat & OR

Conventional PCA
* Consistent when o, >1, 0<p<1

* Strongly inconsistent when a <1, 0<p<1

Sparsity Indexf3

Sparse PCA
* Consistent when 0<B<o<I and a >1, 0<p<1

* Strongly inconsistent when 0<a <3 <1

/ 0 02 04 06 08 1
inal i ' Spike Ind
* Marginal inconsistent when 0< a = p <I pike Index
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* n=25, d=10,000

Simulation Studies

- 0=0.2, 0.4, 0.6, 0.8; B=0, 0.1, 0.3,0.5,0.7
« A=de, A=

2<i<[dF],

i>[dP),

Data matrix

X=U,d*27] + Z U,z

.: }Ldzl

[dF]
u,~(1, ...,1,0.,...,0)

u~(l,...,1,-1+10,...,0)

141
i=2

L)
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PCA & Sparse PCA
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* Build a general framework to study PCA asymptotics
Shen et al. (2011) (under review)

* Introduce sparse PCA asymtptotics in HDLSS
Shen et al. (2011) (resumbitted)

* Build a general framework to study sparse PCA asymptotics
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Population of Blood Vessel Trees
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* Statistical goals:
1. Population variation
2. Age difference
3. Gender difference

4. Build model



Population of Blood Vessel Trees

UNC, Stat & OR

* Statistical goals:
1.
2. Age difference
3. Gender difference

4. Build model



M Descendant Correspondence
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flip this vertex

flip this vertex

« Embed 3-d tree 1n 2-d

« More descendants to the left



M Individual

Tree
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Descendant Correspondence with Branch Length

oy




M Marron’s Tree
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Descendant Correspondence with Branch Length




M Dyck Path Representation
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Example 1, Assume that we have three following trees

Tree 1 Tree 2 Tree 3



Support Tree: union of trees
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Tree 1 Tree 2 Tree 3

Tree 1

89



Support Tree: union of trees
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Tree 1 Tree 2 Tree 3

Tree 1,2



Support Tree: union of trees

UNC, Stat & OR

Tree 1 Tree 2 Tree 3
Tree 1,2,3

/)
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M Dyck Path Representation
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Now, we show how to transform the first tree as a curve.

Tree 1/ Support Tree
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M Dyck Path Representation
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Now, we show how to transform the first tree as a curve.

Tree 1/ Support Tree
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M Dyck Path Representation
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Now, we show how to transform the first tree as a curve.

Tree 1/ Support Tree
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M Dyck Path Representation
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Now, we show how to transform the second tree as a curve.

Tree 2/ Support Tree
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Now, we show how to transform the third tree as a curve.

Tree 3/ Support Tree

*
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Now, we show how to transform the third tree as a curve.

Tree 3/ Support Tree

A
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The Dyck Path:

The curve connecting the coordinate points (X, y)

X-value: the number of steps that the ant passed

Y-value: the corresponding branch height
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M Dyck Path Curves
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Properties:

Flat curve segments correspond to missing branches

Rainbow color corresponds to age
ranging from magenta (for young) to red (for old)

The left part is taller than the right part
the descendant correspondence

The range of x-value 1s twice of the branch number
every branch 1s passed twice - Dyck Path
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PCA of the Dyck Path Curves (
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Tree interpretation of the PC direction
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E Tree Interpretation of the PC direction ( )
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Summary :

* Main variation: banches in the right part of the binary trees

* Reflects the result from the PCA of the Dyck path curves
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Thank you !
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