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CANONICAL KERNELS FOR DENSITY ESTIMATION
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Abstract: The kernel function in density estimation is uniquely determined up to a scale factor. In this paper, we advocate one
particular rescaling of a kernel function, called the canonical kernel, because it is the only version which uncouples the
problems of choice of kernel and cheice of scale factor. This approach is useful for both pictoral comparison of kernel density

estimators and for optimal kernel theory,
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1. Introduction and motivation

For practical kernel density estimation, an obvi-
ous way to choose among kernel functions is to
compare plots of estimates for the data set of
interest. A major problem with this approach oc-
curs when the standard representations of kernel
functions are coupled with identical bandwidths.
For then the estimates are based on different
amounts of smoothing and the comparison be-
comes meaningless. To illustrate this point, Fig-
ures la and b show kernel estimates using the
standard normal and triweight kernels, for a
simulated data set of size 200 from a mixture
density (0.7)Beta(4,8) + (0.3)Beta(40,20), where
standard normal and triweight kernels are used
with the same bandwidth h = 0.066.
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Notice that the triweight kernel estimate is
much less smooth than the normal. Although the
bandwidth is the same for both estimates, the
“effective bandwidth”, observed in the spread of
the kernel function at the bottom of each picture,
is not the same. Local averaging drives the density
estimator, and it is very different for these two
estimates, This makes visual comparison of kernel
estimates nearly impossible because the critical
problem of bandwidth selection is confounded
with the problem of comparison of kernel func-
tions.

A well known way of overcoming this problem
is to readjust the bandwidth for each of the differ-
ent estimators, by making the variance-squared
bias trade off in Mean Square Error the same (sce
Scott, 1976), Our approach is to rescale the kernel
functions, allowing the same bandwidth to repre-
sent the same amount of smoothing across kernels.
In Section 2 it is seen that each kernel has exactly
one rescaling, called the canonical representation
of the kernel, that allows this sensible and con-

_ venient comparison.
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Fig. 1. Dashed curve is a mixture probability density function, (0.7)Beta(4.8) +{0.3)Beta(40,20). Solid curves are kernel density
estirnates with bandwidth 0.066 together with one vertically rescaled kernel function, for (a) the standard normal kernel, (b) the

triweight kernel.

Since the canonical rescaling of a kernel sep-
arates the problems of kernel and bandwidth
selection, it provides a fresh approach to the prob-
lem of optimal kernei selection. Section 3 shows
how this idea can be used to considerably
strengthen the conventional notion of optimal
kernel.

" Section 4 gives the form of the canonical kernel

- for a rich family of kernel functions that includes

essentially all kernels used in practice. Also given

are specific values of the appropriate constants for
the examples in Figure 1.

It is important to note that the ideas of this
paper carry over entirely to kernel estimators in
other nonparametric curve estimation setfings,
such as regression, spectral density and hazard
function estimation. We restrict explicit statement
of our results to the density estimation context,
because that is the simplest and most widely
treated in the literature.

2. Comparison of kernel estimators
The kernel estimator, of a probability density f,

based on a random sample X,,..., X, from f, is
usually defined as

fi(x)=n7" éK,,(x*Xf); (2.1)
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where
K, ()=K(-/h)/h. (2.2)

The function K is called the kernel and is usually
taken to be a probability density, The constant A
is called the bandwidth or smoothing parameter;
it controls the amount of smoothing or local aver-
aging, To see this, consider the plots in Figure 1
where the function X, (-} is shown at the bottom
of each plot. The estimator centers a kernel about
each of the observations, then averages them to-
gether,

The choice of # is crucial to the performance of
the estimator. However, in this paper we choose to
concentrate on the choice of K. See Devroye and
Gyorfi (1984) and Silverman (1986) for discussion
of the classical theory and of subjective methods
for choosing /. For an access to the literature on
data based methods for choosing » see Marron
(1986) and Marron (1988).

Note that since A controls the scale of K, in
(2.1), the function K may be rescaled without
changing the estimator at all (provided the rescal-
ing is absorbed by suitably changing / as well).
Hence it makes sense to express the choice be-
tween Kkernel functions as a choice among
equivalence classes of kernel functions, where two
kernels are considered equivalent when they are
rescalings of each other. The main point of this

paper is that there is a best way of producing a
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representative element from each equivalence class
that facilitates comparison of kernels or classes.

An approach to finding a representative mem-
ber of each equivalence class may be found in
Epanechnikov (1969), where the kernel which
satisfies

fsz(x) dx=1

is used. Another approach, taken by Gasser, Miiller
and Mammitzsch (1985) insists the support of the
kernel be [~1, 1]. A drawback to both of these
methods is that they are rather arbitrary. Neither
makes an attempt fo allow a single choice of
bandwidth to give the same amount of smoothing
for different kernels, although the former comes
fairly close because the variance of the kernel
function (thinking of it as a probability density)
does provide a rough quantification of the type of
“scale” that is pertinent here. While Epanechni-
kov’s variance adjustment is not far from suitable,
it is still rather ad hoc, and the main point of this
paper is to provide a firm mathematical basis for
choosing a particular kernel rescaling, and for
consideration of kernel choice problems.

To establish this firm basis, we need to some-
how quantify the amount of smoothing, A stan-
dard way for doing this is to use the Mean Square
Error,

MSE = E[ f,(x) - f(x)]’,

or the Mean Integrated Square Error,

MISE=fMSE dx.

We explicitly use the MISE here, although the
same theory, with exactly the same conclusion, is
very simply adapted to the MSE. MISE (and also
MSE) is convenient for quantifying the smoothing
problem because it allows a variance-squared bias
decomposition that admits the asymptotic rep-
resentation;

s o[ ]
(2.3)

as n— oo, h—0 with f twice continuously dif-
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ferentiable. See, for example, (3.20) of Silverman
(1986).

To see that (2.3) quantifies the smoothing
trade-off, note that the first term on the right side
of (2.3) gets large when / is too small, i.e. when
the curve is too wiggly, because there is too much
variance caused by averaging over too few points.
On the other hand, the second term gels large
when 4 is too big, i.e. when features of the actual
density are smoothed away, because there is too
much bias introduced by averaging over too large
a neighborhood.

We seek a representative of the possible rescal-
ings of the form

Ks(+) =K(-/8)/3,

that separates # and K in

n-‘h-lfxg +1;4[fx2K5rU(f”/2)2},

To do this, solve for § such that the contribution
made by K; to both terms equal each other:

fKa(x)z dx = [fszs(x) dxr.

Integration by substitution gives

e[ o]

Observe that the kernel K, gives

-2/5

MISE = C( K, ){n 'h™ ' + h"]{f(f"/ﬁ!)z],
(2.4)

where

C(K) = UKz]wszKr/s' (2.5)

In the proof of their Lemma 18 in Chapter 5,
Devroye and Gyorfi point out the interesting fact
that C(X') is invariant within each equivalence
class in the sense that for any 8, and §,,

C(Ks)=C(Ks,).

Because §; does not depend on the particular
scaling of X and because C(KX) is invariant, any
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Fig. 2. Dashed curve is a mixture probability density function, (0.7)8eta(4.8)+(0.3)Beta('40,20). Solid curves are kernel density
estimates with bandwidth 0.046 together with one vertically rescaled kernel function, for (a) the canonical normal kemnel, (b) the

canonical triweight kernel.

equivalence class of rescalings of X has a uniquely
defined representative of that class, K.

Equation (2.4) reinforces K as a useful repre—
sentative for visual comparison of kernel func-
tions. In particular, if and only if K;, is used, the
kernel function no longer plays a role in the
variance-squared bias trade off which quantifies
the smoothing problem. Hence we call K; the
canonical kernel for the equivalence class of res-
calings of K.

To see how use of the canonical kernel makes it
easy to compare kernel functions, consider Figure
2, This has the same setup as Figure 1, except now
the canonical versions of the kernels and the /.
optimal bandwidths, / = 0.046 are used. Note that
it takes a very careful inspection before any dif-
ference at all can be observed between the two
estimates.

3. Optimal choice of kernel

An added benefit of canonical kernels is that they
provide a more rigorous basis for the standard
optimal kernel theory. The problem of the con-
founding of # and K is typically handled by
evaluating the right hand side of (2.3) af the value
of i which minimizes it, and then solving the
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calculus of variation problem for the function X
which minimizes the resulting expression, This
approach is unsatisfactory because it essentially
assumes that the minimizing value of 4 is known.
Of course in practice the minimizer is not known,
and the results of Hall and Marron (1987a, b)
show that in a strong sense, cstimates of the
optimal & will typically be subject to a good deal
of error.

If instead we reformulate the problem as a
choice among equivalence classes of kernels, then
we recognize the kernel that uncouples the prob-
lems of choosing # and K is the sensible ap-
proach. Note that while the calculus of variation
problem for minimizing C(K) in (2.4) looks dif-
ferent from that of Epanechnikov (1969) (dis-
cussed in Section 3.3.2 of Silverman), the invari-
ance of C(K') shows that they are the same. Thus
when the canonical kernel is used to derive the
optimal kernel the answer is the same as that of
Epanechnikov,

Our approach makes it clear that the optimal
choice of kernel does not depend on knowledge of
the bandwidth. The Epanechnikov kernel is opti-
mal for any h, i.e. any amount of smoothing, Note
that the ideas of this section are related in spirit to
some of those in Chapter 5 of Devroye and Gybrfi

{1984).
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sTable 1

Kernel a C, &
Uniform 0 1 (HYS =1.3510
Epanechnikov 1 g 1515 =17188
Biweight 2 L] 35%  =2,0362
Triweight 3 e (W2 =23122
Normal 0 - (i)'/m = 0,7764

4

4, Examples

One interesting family of kernels, which contains
many of the kernels used in practice is

K“(-")=Ca(1_x2)“11—1.1)(x)s (4.1)

where 1 denotes the indicator function and the
constant C, makes K* a probability density:

C,=T(2a+2)(a+1) 2721,

The first three columns of Table 1 show the values
of a and C, for the most common special cases.
The normal kernel is not explicitly of the form
(4.1); it is the degenerate case obtained by taking
the limit as a — co.

It is simple to check that the rescaimg factor &,
for each K¢, is

8, =2"°T(a+1)"°r(2a+3)°r2a +2)*”

xI(2a+1)°Tda+2) "
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The fourth column of Table 1 gives the value of §,
for these special cases,

The very large differences between the pictures
of Figure 1 and those of Figure 2 are explained by
the differences between the numbers appearing in
the fourth column of Table 1.
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