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The mutation effect distribution is essential for understanding evolutionary dynamics. However, the existing
studies on this problem have had limited resolution. So far, the most widely used method is to fit some
parametric distribution, such as an exponential distribution whose validity has not been checked. In this
paper, we propose a nonparametric density estimator for the mutation effect distribution, based on a
deconvolution approach. Consistency of the estimator is also established. Unlike the existing deconvolution
estimators, we cover the case that the target variable has a mixture structure with a pointmass and a
continuous component. To study the property of the proposed estimator, several simulation studies are
performed. In addition, an application for modelling virus mutation effects is provided.
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1. Introduction

Mutations provide the raw material for evolution, so it is of fundamental importance to study the
distribution of the mutation effects in order to understand evolutionary dynamics [1]. However,
there is limited literature on the estimation of the distribution so far. In cases where measurements
of individual mutation effects have been obtained, the most common method is to fit exponential
(or gamma) distributions to the difference of fitness between unmutated and mutated individuals
[1–3]. This parametric approach is simple and easy, but it ignores the existence of measurement
errors that are not usually negligible. As a result, it fails to detect small effects [2]. Moreover, no
serious work has been done to validate the parametric fit. In this paper, we propose a nonparametric
deconvolution estimator for the distribution.

Density estimation in measurement error models has been widely studied (see [4], and refer-
ences within). However, these existing methods only consider the case that the target variable
has a continuous density function. In our motivating evolutionary study (Section 4), two types
of mutations exist: silent mutations that have no effect on the fitness, and deleterious mutations
that reduce the fitness. Both the frequency of deleterious mutations and the size of the mutation
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2 M. Lee et al.

effect are of biological interest. Hence, we propose to model the underlying mutation effect
distribution as a mixture of a pointmass at 0, which corresponds to the silent mutation effect or no
mutation, and a continuous distribution for the deleterious mutation effect that is supported only
on the positive real line. In this case, existing methods from the deconvolution literature cannot
be directly applied.

In this paper, we focus on the case that the distribution of the target variable X is a mixture of
a pointmass and a continuous distribution. Let Xd be the degenerate component of X, and let Xc

be the continuous component. Then X can be represented as

X =
{

Xd with probability p,

Xc with probability 1 − p,
(1)

where p is the unknown mixing probability. Suppose that we know the location of Xd, i.e.
P(Xd = a) = 1 for some known constant a. In all cases (simulations and real data analysis),
a = 0 in this paper. Then the generalised density [5] of X, say fX, can be expressed as

fX(x) = pδa(x) + (1 − p)fc(x), (2)

where δa denotes the Dirac delta at a, and fc is the density of Xc.
Our interest is to estimate the above generalised density of X. According to Equation (2),

estimating the density of X is equivalent to estimating p and fc. One problem is that X is
unobservable in many cases. Instead of X itself, we can only observe the error compounded
variable Y = X + Z, where Z is a measurement error with known density function fZ , which is
assumed to be independent of X. Here, the estimation of p can be understood as the estimation
of the mixture proportion. However, our problem is quite different from the challenging classical
mixture distribution estimation problems, see e.g. [6].

The remainder of the paper is organised as follows. In Section 2, we extend the idea of deconvo-
lution estimation to scenarios where the target variable has a mixture distribution of a pointmass
and a continuous component. Estimators for both the pointmass and the continuous density are
derived. Their asymptotic properties are also provided in Section 2, with the technical proofs
given in Section 5. Section 3 presents several simulation results to illustrate the performance of
the estimators. In Section 4, the estimators are applied to the virus-lineage data of [2].

2. The estimators and their asymptotic properties

In this section, we propose the direct deconvolution estimators of p and fc of Equation (2). The
estimators are derived below in Sections 2.1 and 2.2, respectively, along with theories about their
asymptotic properties. Detailed proofs are provided in Section 5.

Deconvolution estimation of mixture densities is a natural approach, and our proposal directly
extends the method of [7] to cases of mixtures of discrete and continuous components. Let
X be the variable with the mixture structure in Equation (1), and Y denote the corresponding
variable contaminated by the measurement error Z, i.e. Y = X + Z. Our procedure starts with
estimating the density of Y , say fY , based on the observations {Yi : i = 1, . . . , N}. Afterwards,
the generalised density of X can be obtained by directly deconvoluting fZ from fY , due to the
independence assumption of X and Z.

The proposed estimators are attractive in the sense that they take into account the measurement
errors, and have closed form expressions that are easy to implement. Our experience suggests
that the estimator for fc performs well except near non-smooth boundaries. This is a common
problem that is shared by the existing deconvolution estimators. For example, in our motivating
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Journal of Nonparametric Statistics 3

application, the support is known to be positive. In this case, our density estimator has some
problem near the origin, but works well in the rest of the support. To the best of our knowledge,
use of boundary information has not been studied in the context of measurement error models.

2.1. Estimation of the pointmass p

We consider the pointmass estimation first. The basic idea comes from the inverse-Fourier
transformation [8]. Since p is the probability that X takes the value a, it can be obtained as

p = lim
T →∞

1

2T

∫ T

−T

exp(−ita) ϕX(t) dt, (3)

where ϕX is the characteristic function of X.
From Equation (3), the pointmass p can be estimated by replacing ϕX with its estimator ϕ̂X.

Hence we need to estimate the characteristic function of X. For that, we make use of the relation
Y = X + Z, and the independence between X and Z. It follows that ϕX = ϕY /ϕZ , where ϕZ is
the known characteristic function of Z, and ϕY is the characteristic function of Y that can be
estimated by the empirical characteristic function of Y based on the observations, i.e.

ϕ̂Y (t) = 1

n

n∑
j=1

exp(itYj ).

As a result, a naive estimator of p is proposed as

p̃ = lim
T →∞

1

2T

∫ T

−T

exp(−ita) ϕ̂X(t) dt,

= lim
T →∞

1

2T

∫ T

−T

exp(−ita) · ϕ̂Y (t)

ϕZ(t)
dt,

= lim
T →∞

1

2T

∫ T

−T

1

n

n∑
j=1

exp(it (Yj − a))

ϕZ(t)
dt. (4)

One thing to be noted is that p is a probability, and hence a real number. However, the integrand
of Equation (4) contains a complex term, so it is not guaranteed that p̃ is a real number. Therefore,
we take only the real part of p̃ as the estimator. Another problem is the computational challenge
caused by the limiting operation. To ease the difficulty, we replace T by Tn, a sequence of positive
real numbers which goes to infinity as n goes to infinity. Hence we can get the final estimator p̂

of the pointmass as

p̂ = 1

2nTn

n∑
j=1

Re
∫ Tn

−Tn

exp(it (Yj − a))

ϕZ(t)
dt, (5)

where Re denotes the real part of the complex integral.
The estimator p̂ can be shown to be consistent as stated in Theorem 1. Below, we first derive the

mean and the variance of the estimator in Lemmas 1 and 2. All the proofs are given in Section 5.

Lemma 1 Let p̂ be the estimator of p as defined in Equation (5), and assume that ϕZ(t) does
not equal to 0 for any t ∈ [−Tn, Tn]. Then the expectation of the estimator is given by

E(p̂) = p + 1 − p

2Tn

Re
∫ Tn

−Tn

ϕc(t) exp(−ita) dt,

where ϕc is the characteristic function of Xc, the continuous component of X.
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4 M. Lee et al.

Remark 1 Note that Tn goes to infinity as n → ∞, and Xc is a continuous random variable with
P(Xc = a) = 0. Hence the expectation of p̂ converges to p as n goes to infinity, which suggests
that p̂ is asymptotically unbiased.

The following Lemma 2 derives the variance of p̂. We assume that the distribution of
the measurement error Z is symmetric about 0, a common assumption in measurement error
models.

Lemma 2 Suppose that the distribution of Z is symmetric about 0. Then the variance of p̂ is
given by

Var(p̂) = 1

2nT 2
n

∫ Tn

0

∫ Tn

0

[
Re{ϕV (s + t) + ϕV (s − t)} − 2Re{ϕV (s)}Re{ϕV (t)}

ϕZ(s)ϕZ(t)

]
ds dt,

where V = Y − a, and ϕV (·) is the characteristic function of V .

Remark 2 Note that the variance of the density estimator in [7] is

Var(f̂n(x)) = 1

nπ2

∫ Tn

0

∫ Tn

0

[
1

2
Re{ϕV (s + t) + ϕV (s − t)} − Re{ϕV (s)}Re{ϕV (t)}

]

× ϕK(shn)ϕK(thn)

ϕZ(s)ϕZ(t)
dsdt.

The variance of the pointmass estimator p̂ has a very similar structure as that of f̂n(x)

when hn = 0. However, Var(p̂) converges to 0 much faster than Var(f̂n(x)). In fact, Var(p̂)/

Var(f̂n(x)) = O(T −2
n ) as n → ∞.

Based on the above two lemmas, we conclude that p̂ is consistent under some suitable conditions
in Theorem 1.

Theorem 1 Suppose that ϕZ(t) is not equal to 0 for any t , fc(a) has a finite value, and
the distribution of Z is symmetric about 0. In addition, suppose that there is a sequence Tn

satisfying

Tn → ∞,
1

n1/2 Tn

∫ Tn

0

1

ϕZ(t)
dt → 0 (6)

as n goes to infinity. Then p̂ converges to p in probability as n → ∞, i.e. p̂ is a consistent
estimator of p.

Remark 3 Theorem 1 suggests that the distribution of the measurement error Z highly affects
the choice of Tn, hence the convergence rate of the estimator. For example, when Z has
the standard normal distribution, Tn = α log1/2 n for any 0 < α < 1 satisfies Equation (6). In
this case, the variance of the estimator is of the order log−1/2 n, i.e. Var(p̂) = O(log−1/2 n)

as n → ∞.
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Journal of Nonparametric Statistics 5

2.2. Density estimation of the continuous component fc

To estimate fc, we also use the inverse-Fourier transformation. In particular, when ϕX is an
integrable function, it is known [8] that the random variable X has a density function fX of the form

fX(x) = lim
M→∞

1

2π

∫ M

−M

exp(−itx)ϕX(t) dt.

In our problem, Xc is assumed to have a continuous density fc, so its characteristic function ϕc

is integrable. In addition, the mixture structure of X suggests that ϕc(t) can be expressed as

ϕc(t) = ϕX(t) − p · exp(ita)

1 − p
, (7)

where ϕX(t) can be estimated in the same manner as discussed above in Section 2.1. Then, fc can
be estimated as

f̃c(x) = lim
M→∞

1

2π

∫ M

−M

ϕ̂c(t) exp(−itx) dt

= lim
M→∞

1

2π

∫ M

−M

[
ϕ̂X(t) − p exp(ita)

1 − p

]
exp(−itx) dt

= lim
M→∞

1

2π(1 − p)

∫ M

−M

⎡
⎣1

n

n∑
j=1

exp
(
it (Yj − x)

)
ϕZ(t)

− p exp
(
it (a − x)

)⎤⎦ dt.

As in the pointmass estimation, f̃c is not guaranteed to be a real-valued function. Moreover, the
computation of f̃c also involves the limit operation. Therefore, we take only the real part of the
above integration, and replace M by Mn, a sequence of positive numbers converging to infinity.
In addition, since p is usually unknown, we plug in p̂ to replace p. Hence the final form of the
estimator f̂c is given as

f̂c(x) = 1

2πn(1 − p̂)

n∑
j=1

Re
∫ Mn

−Mn

[
exp(it (Yj − x))

ϕZ(t)
− p̂ exp(it (a − x))

]
dt. (8)

If the true probability p is known, then f̂c can be obtained using that value, which improves the
estimation performance.

Theorems 2 and 3 below provide some asymptotic properties of f̂c(x). For any x �= a, we show
in Theorem 2 that the proposed density estimator is a consistent estimator of fc(x) under some
suitable conditions. In addition, under stronger conditions, Theorem 3 establishes the consistency
of f̂c(x) at x = a. The proofs of the theorems are provided in Section 5.

Theorem 2 Suppose that the conditions in Theorem 1 hold. In addition, suppose that

Mn → ∞, n−1/2
∫ Mn

0

1

ϕZ(t)
dt → 0 (9)

as n goes to infinity. Then f̂c(x) converges to fc(x) in probability for any x �= a.
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6 M. Lee et al.

Theorem 3 Suppose that ϕZ(t) is not equal to zero at any t , fc(a) is finite, and the distribution
of Z is symmetric about 0. In addition to Equation (9) suppose that

Mn = o(Tn), n−1/2
∫ Tn

0

1

ϕZ(t)
dt = O(1), (10)

as n → ∞. Then f̂c(x) is a consistent estimator of f̂c(x) at x = a.

Remark 4 When comparing Theorem 3 with Theorem 2, the consistency of f̂c(x) at x = a

requires stronger conditions, which guarantee Mn(p̂ − p) → 0 in probability. This is stronger
than p̂ − p converges to 0, which is required in Theorem 2.

2.3. Asymptotic properties of f̂X

After obtaining p̂ and f̂c(x), the generalised density estimator of Equation (2) is easily obtained as

f̂X(x) = p̂δa(x) + (1 − p̂)f̂c(x). (11)

Under the conditions in Theorem 2, the consistency of f̂X(x) is easily shown by the consistency
of p̂ and f̂c(x), and Lévy’s continuity theorem.

Corollary 1 Suppose that the conditions in Theorem 2 hold. Then, for any x �= a, f̂X(x) in
Equation (11) is a consistent estimator of fX(x).

In addition to its consistency, we obtain the actual convergence rate of f̂X in terms of the mean
squared error (MSE). There are two factors which affect the convergence rate: the smoothness of
the error distribution, the smoothness of fc. We use the order of the characteristic functions ϕZ(t)

and ϕc(t) as t → ∞ in order to describe the smoothness of the corresponding distributions.
In Lemma 3, we obtain the order of Bias(f̂X(x)), which is determined by the tail property of

ϕc. Here, we consider two types of ϕc:

(B1) |ϕc(t)||t |β1 ≤ d1, for some β1 > 1 and d1 > 0 as t → ∞;
(B2) |ϕc(t)| exp(|t |β1/γ1) ≤ d1, for some β1 ≥ 1 and d1 > 0 as t → ∞;

Lemma 3 Suppose that ϕZ(t) is not equal to zero for any t . Then, for any x �= a,

Bias(f̂X(x)) =

⎧⎪⎪⎨
⎪⎪⎩

O(T −1
n + M

−β1+1
n ), under (B1);

O

(
T −1

n + M
−β1+1
n exp

(
−M

β1
n

γ1

))
, under (B2).

The following Lemma 4 shows the order of the variance of f̂X(x), which depends on the tail
property of ϕZ(t). We consider three types of error distributions:

(V1) |ϕZ(t)||t |β2 ≥ d2, t → ∞, for some β2 > 1 and d2 > 0;
(V2) |ϕZ(t)| exp(|t |β2/γ2) ≥ d2, t → ∞, for some β2 > 0, γ2 > 0 and d2 > 0;

In (V1), the constraint β2 > 1 comes from the fact that fZ is a continuous density, so that its
characteristic function |ϕZ| is integrable.
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Lemma 4 Suppose that ϕZ(t) is symmetric about 0. Then,

Var(f̂X(x)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O

(
T

2β2−1
n

n
+ M

2β2+1
n

n

)
, under (V1);

O

(
1

nT
β∗
n

exp

(
2T

β2
n

γ2

)
+ 1

nM
β∗−2
n

exp

(
2M

β2
n

γ2

))
, under (V2),

where β∗ = 1 if β2 < 1, and β∗ = 2β2 if β2 ≥ 1.

From the above Lemmas 3 and 4, we can get the convergence rate of f̂X(x). Theorem 4 below is
for the case where (B1) and (V2) are satisfied. Note that the normal distribution, which is the most
common model for measurement errors, satisfies the condition (V2) with β2 = 2. Exponential
or gamma distributions can be examples of (B1). The results for the other combinations can be
obtained by the proof procedures similar to Theorem 4.

Theorem 4 Suppose that ϕc and ϕZ satisfy (B1) and (V2), respectively. Assume that ϕZ(t) =
ϕZ(−t) �= 0 for any t . Then, by choosingMn = (γ /4)1/β2(log n)1/β2 andTn = (γ /4)1/β2(log n)α/β2 ,
for any x �= a,

E(f̂X(x) − fX(x))2 = O((log n)−2α/β2), as n → ∞,

where α = min(β1 − 1, 1) ∈ (0, 1].
Note that [9] shows that when X is a continuous variable with the density function fX, and Z

is a super smooth error corresponding to (V2), the convergence optimal convergence rate of f̂X

has an order O((log n)−2α∗/β2), where 0 ≤ α∗ < 1. Our result established in Theorem 4 is very
similar to this optimal convergence rate, even though the assumptions on the target distribution
are different.

3. Simulation studies

In this section, we perform three simulation studies to investigate the performance and properties
of the estimators proposed in Section 2. All subsections have similar simulation schemes: the
pointmass p = 0.5 at 0, the sample size n = 300, the distribution of the measurement error, etc.
The only change is in the distribution of the continuous components, which are N (3, 1)N (0, 1),
and Exp(1), respectively. These simulation setups cover a wide range of scenarios, including
overlapping mixture components and non-smooth boundaries. Details are explained in each
subsection.

An important issue in the deconvolution estimation is the choice of the integration range parame-
ters,Tn, for estimatingp, andMn for estimatingfc. Instead of selecting one pair of such parameters,
we adopt the scale space approach suggested by Chaudhuri and Marron [10]. The idea is that we
will try a range of parameters, and see the change of the estimators as the parameters change.

3.1. Case 1: mixture of N (3, 1) and the pointmass

We start with a variable X whose distribution is the mixture of a normal distribution with mean
3 and standard deviation 1, and the pointmass at 0, with the mixing probability being 0.5, i.e.

X ∼
{

N (3, 1) with probability 0.5,

0 with probability 0.5.
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8 M. Lee et al.

In this case, the two components are not strongly overlapping. Moreover, the continuous part is
supported on the whole real line, so there is no boundary problem.

We assume the independent measurement error variable Z has a normal distribution with mean
0 and standard deviation σ = 0.1. We simulate L = 100 random samples with size n = 300
from the distribution of Y = X + Z, which is the convolution of the target distribution and the
distribution of Z.

Figure 1 summarises the performance of the pointmass estimator for 100 simulated data sets.
Figure 1(a) shows the change in the pointmass estimator as a function of the integration parameter
Tn of Equation (5), where the vertical axis shows the value of p̂. The grey curves show the
pointmass estimators from the 100 samples, and the black solid curve is the average of the 100
estimators. According to Figure 1(a), as Tn increases, the estimator p̂ first decreases from 1, and
increases slightly before stabilising around the true pointmass 0.5 for Tn larger than 3. Once it
stabilises, the average estimator p̂ lies within the interval [0.4983, 0.5010], which suggests a
small bias when Tn is large enough. On the other hand, the variance of the estimator increases as
Tn increases.

For Figure1(b), we choose a specific value of p̂, from each grey curve Figure1(a). Since we
found that the pointmass is usually overestimated in several simulation studies, and an overlarge
Tn results in instability of the estimation, we choose the first local minimum of each p̂ as our
estimate, if it lies between 0 and 1. Otherwise, e.g. is there is no local minimum, we choose a
Tn which gives the smallest difference of p̂, and the corresponding p̂ is used as our estimate.
Figure1(b) shows the scatter plot of these 100 estimators. To show the distribution of these
estimators, their kernel density estimator (the solid curve) is plotted together. In addition, the
dotted and dashed vertical curves show the true value 0.5 and the average of the 100 estimators,
respectively. For this selection method, the pointmass estimator tends to have a slightly smaller
value than the true value (the average of the 100 estimators is about 0.48). Note that we use the
same range for the horizontal axis in the corresponding panels of Figures 1, 4 and 7 to make the
comparison clear.

Figure 2 plots the density estimator in Equation (8) for various values of Mn. Here, the true
value of p = 0.5 is used in estimating the density fc, in order to study the performance of density
estimation with no influence from the pointmass estimation. In each panel, the black solid curve
is the average of the estimators from the 100 samples, while the grey dash–dot curve is the true
density fc. In addition, the grey solid curves are the average estimator ± 2 standard error, which

Figure 1. Case 1: the left panel shows 100 simulated pointmass estimators (the grey curves), and their average (the
black solid curve), as functions of Tn which is the integration range parameter on the horizontal axis. In the right panel,
each point is an individual pointmass estimator, and the solid curve is a kernel density estimate of these 100 estimators.
The dotted and dashed vertical lines show the true value of the pointmass and the average estimator, respectively.
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Journal of Nonparametric Statistics 9

Figure 2. Case 1: estimation of the continuous density (with known p). This plot shows the proposed estimator of fc.
Each panel corresponds to the estimator based on Mn = 1.50, 1.52, 1.56, and 1.58. In each plot, the dash–dot curve is
the true density, the black solid curve is the average estimator, and the grey solid curves show the average estimator ±2
standard error, based on the 100 random samples.

play a role as a confidence band based on the 100 samples. Note that in some panels, the curves
are completely overlapping.

Similar to the pointmass estimation, a large value of the integration range parameter Mn cor-
responds to a small estimation bias. However, when Mn is too big, the estimator is very wiggly,
and some periodic component dominates the entire structure of the target function. On the other
hand, a small Mn gives a small estimation variance, but a large bias due to over-smoothing. When
Mn = 1.52, the estimator is almost the same as the true value of fc. Interestingly, the standard
error of f̂c(x), reflected by the width of the confidence band, is much larger near x = 0 than
near x = 6. Since the normal density curve is symmetric about its mean (3 in this case), one
might expect the variations of the estimators f̂c(0) and f̂c(6) would be similar, but this is not the
case. The pointmass at 0 adds additional noise to the estimation of the density function at 0. This
is consistent with Remark 4, which states that the consistency of f̂c(x) at x = a requires more
assumptions than x �= a.

Figure 3 shows the density estimators which are computed using the pointmass estimator p̂

plotted in Figure 1(b). Compared to the density estimators obtained when using the true p, the
curves in Figure 3 show larger values near x = 0, which is the location of the pointmass. This
result can be explained by the underestimation of the pointmasss (0.478 on average). Except for
the neighbourhood of x = 0, the performance of the density estimator based on p̂ is similar to
that based on p.
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10 M. Lee et al.

Figure 3. Case 1: estimation of the continuous density (with estimated p̂). This plot shows the proposed estimator of
fc, based on the pointmass estimator p̂. Each panel corresponds to the estimator based on Mn = 1.50, 1.52, 1.56, and
1.58. In each plot, the dash–dot curve is the true density, the black solid curve is the average estimator, and the grey solid
curves on the 100 random samples.

3.2. Case 2: mixture of N (0, 1) and the pointmass

The second simulation considers the mixture of the standard normal distribution and the point-
mass at 0 with a mixing probability of 0.5. Different from the first simulation, the location of
the pointmass 0 is now the same as the mode of the standard normal distribution, so the two
components are highly overlapping. We expect the pointmass p strongly affects the estimation of
fc, and p̂ is also affected by fc(x) near x = 0, which are confirmed below. We make the same
assumption about the measurement error variable Z. The sample size and the number of iterations
are also the same as the previous simulation, i.e. n = 300 and L = 100.

As in the previous case, in Figure 4(a), each grey curve shows an individual estimator and
the black solid curve is the average estimator. The overall trend of p̂ is similar to the previous
simulation but the performance is worse, as we expected: a slightly larger bias and a much larger
variance. Especially, the estimation variation is much larger when a large Tn is used. This can be
explained by the overlapping of the two mixture components. To estimate the pointmass, we use
the same criterion in choosing Tn as discussed in Case 1. As shown in Figure 4(b), we can see the
pointmass is overestimated (the average of the 100 estimators is around 0.52).

Similar to Figure 2, Figure 5 shows the result of the density estimation, which is based on the
true p = 0.5. One big difference from the previous simulation is the trend of the standard error.
In the current simulation, both the estimator f̂c and the standard error are almost symmetric about
0. In addition, the standard error has the biggest value at 0. This is because the location of the
pointmass is the center point of the continuous component. So its effect on the estimation of fc(x)
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Figure 4. Case 2: this plot shows the bias and variance in the estimation of the pointmass p. In the panel (a), the
black solid curve shows the average estimator, and the grey curves are individual estimators. The horizontal axis Tn is
the integration range parameter. The panel (b) shows a kernel density estimator of 100 pointmass estimators. The dotted
vertical line shows the true value, and the dashed line shows the average estimator.

Figure 5. Case 2: this plot shows the direct deconvolution estimator of fc. Each panel corresponds to the estimator
based on M = 1.50, 1.52, 1.56, and 1.58. In each plot, the grey dash–dot curve is the true density, the black solid curve is
the average estimator, and the grey solid curves show the average estimator ±2 standard error.

is the largest when x = 0, and decreases as x departs from 0. Like the first case, Mn = 1.52 gives
the best fit, almost overlapping the target.

We also estimate fc based on the pointmass estimator p̂, instead of p. As we discussed in
the previous simulation, overall performance of the density estimator f̂c(x) is similar to that
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12 M. Lee et al.

based on the true p, except near x = 0. Different from Case 1, f̂c(x) is underestimated near the
neighbourhood of x = 0, which can be explained by the fact that p̂ is overestimated (0.523 on
average) in this case.

In addition, we investigate the performance of the estimation of fX(x), which is our essential
estimand, in terms of the integrated squared bias, variance, and MSE. Figure 6 shows the above
three numerical measures in log scale for various values of Mn. Each panel of Figure 6 contains
three curves. The grey dashed curve is for the case where fX(x) is assumed to be a continu-
ous, i.e. the pointmass component is ignored. The black dashed curve displays the case where
the true p = 0.5 is known, and hence used in estimating fc(x). The black solid curve is used
for the case where p is estimated, which fully reflects our mixture assumption on fX(x) with
unknown p.

As one can expect, the performance (in terms of the MSE) is the best when the true pointmass
p = 0.5 is used, and the worst when the pointmass component is ignored. When the estimated
p is used, the estimation result is worse than the case p = 0.5, but is much better than the case
p = 0. In addition, when Mn is too large, all three cases perform poorly.

3.3. Case 3: mixture of Exp(1) and the pointmass

The last simulation considers the mixture of the standard exponential distribution and the point-
mass at 0. The rest of the simulation setup is the same as the previous two cases, in terms of
the mixing probability, the measurement error distribution, the sample size, and the number of
iterations.

The difficulty in estimating the exponential density is that it has a non-smooth left boundary, so
the estimation would not be accurate near the left boundary (at 0). Moreover, the location of the
pointmass is near the peak of the exponential component. Like the second case, the estimation of
both p and fc is highly related, which makes the task harder.

As shown in Figure 7, the pointmass is a little overestimated. The same criterion as in Case
1 is used to select Tn. The estimation variance and bias are similar to those of the second case,
but slightly larger. The estimation of fc also has a similar trend with the other cases, in terms of
a bias or a variance. In addition, it gives us very important information on the boundary effect;
Since the exponential density is supported only on the positive real line, it is desirable that the
estimator has only positive support. However, the support of f̂c includes the negative real line, and
f̂c is underestimated near 0, especially when Mn is small. For large Mn, as shown in Figure 8(c)

Figure 6. Case 2: in Panels (a)–(c), the integrated squared bias, variance and MSE of f̂X(x) are plotted versus Mn

in log-scale. In each panel, the grey dashed curve is for the case where p = 0 is assumed when estimating fc(x), the
black dash–dot curve corresponds to the case p = 0.5, and the black solid curve shows the case where p̂ is used in
estimating fc(x).
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Figure 7. Case 3: this plot shows the bias and variance in the estimation of the pointmass p. In the left panel, each
grey curve is an individual estimator, and the black solid curve shows the average estimator. The panel (b) shows the 100
estimators with its density. Here, the dotted/dashed lines show the true/average estimator, respectively.

Figure 8. Case 3: this plot shows the direct deconvolution estimator of fc. Each panel corresponds to the estimator
based on M = 1.50, 1.52, 1.56, and 1.58. In each plot, the grey dash–dot curve is the true density, the black solid curve is
the average of the estimators, and the grey solid curves show the average estimator ±2 standard error.

and (d), the estimator changes sharply near 0, and oscillates on the negative real line. The variation
on the negative real line can be considered as noise in these cases, so the boundary problem is
weakened. Hence a larger Mn is preferred if the target density has any bounded support. In this
simulation, the density estimator performs best when Mn = 1.56, which is much bigger than the
previous two cases.
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14 M. Lee et al.

4. Application to the virus-lineage data

In this section we illustrate the performance of the proposed estimators via an application to the
virus lineage data in [2]. In this analysis, our goal is to estimate the distribution of mutation effects
on virus fitness. In this data set, 10 virus lineages were grown in the lab for 40 days, in a manner
that promoted the accumulation of mutations in discrete random events. Plaque size was used as
a measure of viral fitness and measured every day for each lineage. Then the mutation effect on
fitness is defined as the reduction in plaque sizes. In addition, the lineages were founded with a
high fitness virus to ensure that during any given time interval, there are only two possibilities in
terms of mutations:

(i) No mutation occurs, or only silent mutations occur.
(ii) A deleterious mutation occurs.

Since the silent mutation does not affect fitness, theoretically the plaque size does not change,
so the mutation effect is 0 for case (i). On the other hand, deleterious mutations reduce the plaque
size, so the deleterious mutation effect takes only positive values. The probability distribution
of the deleterious mutation effects is usually considered as continuous. Hence the distribution
of mutation effects can be expressed as the mixture of a point mass at 0, corresponding to case
(i), and a continuous distribution (for the deleterious mutations) which is supported only on the
positive real line. Unfortunately, we cannot observe the mutation effects without measurement
errors, hence it is necessary to consider the measurement-error model on top of the mixture
structure.

We consider the pointmass estimation result first. Figure 9 plots the p̂ versus Tn. In Figure 9(a),
the pointmass p is estimated for Tn in the range [0.1, 10]; since we assume the normality for the
measurement error Z, the integrand of Equation (5) may have a very large value near tails. So a
large value of Tn results in instability of the estimation and too long computation time, which is the
reason we restrict the upper bound of Tn by 10. The estimator p̂ changes sharply when Tn is large,
which makes it difficult to see the precise change of p̂ for small values of Tn. So in Figure 9(b),
the picture is zoomed into the region to the left of the vertical bar, i.e. for Tn between 0.1 and 4.
From the simulation studies in Section 3, we have observed that p̂ is usually overestimated, that
is, it tends to be larger than the true parameter p. In addition, when Tn is large, variation of the

Figure 9. The panel (a) plots the estimator of the pointmass p̂ versus the range parameter Tn = (0.1, 0.2, . . . , 10). The
panel (b) shows p̂ only for Tn = (0.1, 0.2, . . . , 4) to get a more precise view in the region of interest. The black dotted
lines highlight the suggested Tn and p̂.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
e
e
,
 
M
i
h
e
e
]
 
A
t
:
 
0
2
:
1
0
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
0



Journal of Nonparametric Statistics 15

estimation is very large. Hence we select the first local minimum as the estimator for p, which is
0.9363 at Tn = 2.4.

For the estimation of fc, we again use the scale space approach suggested by Chaudhuri and
Marron [10]. Figure 10 shows the density estimator f̂c for different values of Mn, the integration
range parameter. Each panel shows two density curves: for the black dash–dot curve, p̂ = 0.9363
is used, and for the grey solid curve, we use p̂ = 0.9027, which is the pointmass estimator given
by Burch et al. [2].

When the smaller pointmass is used, the peak location of the density curve estimator is closer
to 0. It is due to the difficulty of separating small deleterious mutation effects from silent mutation
effects. If we underestimate p, the proportion of silent mutations, some silent mutations are
considered as deleterious mutations that have small effects. Except this, the effect of pointmass
estimation is small on estimating the density curve. As shown in Figure 10, the two curves in each
panel look very similar, and the curves change in the same way as Mn changes.

We now discuss the effect of the integration range parameter. When Mn is small (for exam-
ple, Mn = 0.5), the estimator shows the overall trend of the density curve well. According to
Figure 10(a), the deleterious mutation effects are mostly distributed near 0. In this case, the den-
sity estimator has positive values even on the negative real line, which contradicts the fact that
the deleterious mutation effects are always non-negative. This boundary effect shows up bet-
ter when Mn is larger. In Figure 10(d), the density estimator changes very sharply near 0, and
oscillates on the negative real line. The variation of the density curves on the negative part can
be considered as noise, and the true underlying density curve is supported only on the positive
real line.

Figure 10. These plots show the density estimator f̂c for different values of Mn. In each plot, the black dash–dot curve
is the estimator when p̂ = 0.9363, and the grey curve is when p̂ = 0.9027.
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16 M. Lee et al.

5. Theoretical proofs

In this section, we provide technical proofs for the lemmas and theorems in Section 2. Note that
the estimators p̂ and f̂c have similar structures to the density estimator of [7]. Hence the proofs
of the theorems are similar to their proofs.

Proof of Lemma 1 It can be seen by the simple change of variable technique. According to the
expression of p̂,

E(p̂) = E

[
1

2Tn

Re

{∫ Tn

−Tn

exp(it (Y − a))

ϕZ(t)
dt

}]

=
∫ ∞

−∞

∫ Tn

−Tn

1

2Tn

Re

{
exp(it (y − a))

ϕZ(t)

}
fY (y) dt dy.

Under the assumption that ϕZ(t) �= 0, 1/ϕZ(t) is a continuous function, hence it is bounded above
on a compact set [−Tn, Tn]. In addition, |eit (y−a)| is bounded by 1. Hence the inner integrand in
the above integration is absolutely integrable. So the order of integration can be changed based on
Fubini’s theorem. Then, using the definition of the characteristic function of Y , and the relation
between ϕZ(·), ϕX(·) and ϕY (·), we have the following:

E(p̂) = 1

2Tn

Re
∫ Tn

−Tn

exp(−ita)ϕX(t)dt

= 1

2Tn

∫ Tn

−Tn

exp(−ita){p · exp(ita) + (1 − p)ϕc(t)}dt

= p + 1 − p

2Tn

∫ Tn

−Tn

exp(−ita) ϕc(t)dt.

This completes the proof. �

Proof of Lemma 2 When a random variable is symmetric about 0, its characteristic function is
a real valued function, and symmetric about 0. So ϕZ(·) is a real valued even function. Then we
can get

Var(p̂) = 1

4nT 2
n

Var

(∫ Tn

−Tn

cos t (Y − a)

ϕZ(t)
dt

)

= 1

nT 2
n

E

(∫ Tn

0

cos tV − E(cos tV )

ϕZ(t)
dt

)2

,

where V = Y − a. The second equality is possible from Fubini’s theorem and the fact that cos(·)
is also an even function. Recall the cosine product formula that 2 cos A cos B = cos(A + B) +
cos(A − B). Then the above equation becomes

Var(p̂) = 1

2nT 2
n

∫ Tn

0

∫ Tn

0

E{cos(s + t)V + cos(s − t)V } − 2E(cos sV )E(cos tV )

ϕZ(s)ϕZ(t)
ds dt

= 1

2nT 2
n

∫ Tn

0

∫ Tn

0

Re{ϕV (s + t) + ϕV (s − t)} − 2Re{ϕV (s)}Re{ϕV (t)}
ϕZ(s)ϕZ(t)

ds dt.

This completes the proof. �
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Proof of Theorem 1 To show the consistency, we will show that both the bias and the variance
of p̂ converges to 0. From Lemma 1,

bias(p̂) = 1 − p

2Tn

∫ Tn

−Tn

exp(−ita) ϕc(t) dt

= (1 − p)π

Tn

· 1

2π

∫ Tn

−Tn

exp(−ita) ϕc(t) dt.

Clearly (1 − p)π/Tn converges to 0, and the latter part converges to fc(a) because ϕc(t) is a
characteristic function of a continuous random variable Xc. Therefore the bias of p̂ converges to
0 as n → ∞.

Since |ϕV (t)| ≤ 1 for any t ,

|Re{ϕV (s + t) + ϕV (s − t)} − 2Re ϕV (s) Re ϕV (t)| ≤ 4.

Then the variance of p̂ is bounded by

Var(p̂) ≤ 2

nT 2
n

∫ Tn

0

∫ Tn

0

1

ϕZ(s)ϕZ(t)
ds dt = 2

(
1

n1/2 Tn

∫ Tn

0

1

ϕZ(t)
dt

)2

. (12)

Hence it converges to 0 according to Equation (6). �

Proof of Theorem 2 First, we divide f̂c(x) into three parts:

f̂c(x) = 1

2π(1 − p̂)

∫ Mn

−Mn

Re

⎧⎨
⎩1

n

n∑
j=1

exp(it (Yj − x))

ϕZ(t)
− p̂ · exp(it (a − x))

⎫⎬
⎭ dt

= 1 − p

1 − p̂

⎡
⎣ Re

2π(1 − p)

∫ Mn

−Mn

⎧⎨
⎩1

n

n∑
j=1

exp(it (Yj − x))

ϕZ(t)
− p · exp(it (a − x))

⎫⎬
⎭ dt

+ Re

2π(1 − p)

∫ Mn

−Mn

(p − p̂) exp(it (a − x))dt

⎤
⎦

= T1(T2 + T3),

where

T1 = 1 − p̂

1 − p
,

T2 = 1

2π(1 − p)
Re

∫ Mn

−Mn

⎧⎨
⎩1

n

n∑
j=1

exp(it (Yj − x))

ϕZ(t)
− p · exp(it (a − x))

⎫⎬
⎭ dt,

and T3 = 1

2π(1 − p)
Re

∫ Mn

−Mn

(p − p̂) exp(it (a − x)) dt.

To show the consistency of f̂c(x), we will show that T1 → 1, T2 → fc(x) and T3 → 0 in
probability, as n goes to infinity.
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18 M. Lee et al.

Since p̂ converges to p in probability by Theorem 1, T1 converges to 1 in probability. It is
because p̂ is a consistent estimator of p and f (x) = 1/(1 − x) is a continuous function of x

except in the case x = 1.
Now we show T3 converges to 0. Since we only consider the case x �= a,

T3 = 1

2π(1 − p)
(p − p̂) · Re

∫ Mn

−Mn

eit (a−x)dt (13)

= p − p̂

2π(1 − p)

∫ Mn

−Mn

cos t (a − x)dt = (p − p̂) sin Mn(a − x)

π(1 − p)(a − x)
. (14)

Here, | sin Mn(a − x)| is uniformly bounded by 1, and we already showed p̂ converges to p,
i.e. p̂ − p converges to 0 in probability. Hence T3 converges to 0 in probability.

For the last step, we will show that T2 converges to fc(x) in probability. For that, it suffices to
show that E(T2) → fc(x), and Var(T2) → 0 as n goes to infinity. From the definition of T2,

E(T2) = 1

2π(1 − p)
Re

∫ ∞

−∞

∫ Mn

−Mn

{
exp(it (y − x))

ϕZ(x)
− p · exp(it (a − x))

}
fY (y) dt dy.

Since ϕZ(t) �= 0 for any t , the absolute value of the above integrand is bounded by an integrable
function, i.e.∣∣∣∣exp(it (y − x))

ϕZ(x)
− p · exp(it (a − x))

∣∣∣∣ fY (y) ≤
(∣∣∣∣ 1

ϕZ(x)

∣∣∣∣ + p

)
fY (y).

Then, by Fubini’s theorem, E(T2) is rewritten as

E(T2) = 1

2π(1 − p)
Re

∫ Mn

−Mn

{
ϕY (t) exp(−itx)

ϕZ(t)
− p · exp(it (a − x))

}
dt

= 1

2π(1 − p)
Re

∫ Mn

−Mn

{ϕX(t) − p · exp(ita)} exp(−itx) dt.

= 1

2π
Re

∫ Mn

−Mn

ϕc(t) exp(−itx) dt.

The last equality comes from Equation (7). Since Mn goes to infinity as n increases,

E(T2) → Re

(
1

2π

∫ ∞

−∞
ϕc(t) exp(−itx)dt

)
= Re(fc(x)) = fc(x),

as n goes to infinity.
The next part shows the calculation of the variance ofT2, which is very similar to the computation

of Var(p̂) in the proof of Lemma 2.

Var(T2) = Var

⎡
⎣ 1

2nπ(1 − p)

n∑
j=1

∫ Mn

−Mn

{
cos t (Yj − x)

ϕZ(t)
− p · exp

(
it (a − x)

)}
dt

⎤
⎦

= Var

⎡
⎣ 1

2nπ(1 − p)

n∑
j=1

∫ Mn

−Mn

cos t (Yj − x)

ϕZ(t)
dt

⎤
⎦
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By letting V = Y − x, we can get

Var(T2) = 1

nπ2(1 − p)2
E

[∫ Mn

0

cos tV − E cos tV

ϕZ(t)
dt

]2

=
∫ Mn

0

∫ Mn

0

Re{ϕV (s + t) + ϕV (s − t)} − 2Re(ϕV (s))Re(ϕV (t))

2nπ2(1 − p)2ϕZ(s)ϕZ(t)
ds dt

≤ 2

π2(1 − p)2

(
n−1/2

∫ Mn

0

1

|ϕZ(t)|dt

)2

. (15)

From Equation (9), the above variance converges to 0 as n goes to infinity, hence T2 converges
to fc(x) in probability.

Therefore f̂c(x) = T1(T2 + T3) converges to fc(x) in probability, i.e. f̂c(x) is a consistent
estimator of fc(x). �

Proof of Theorem 3 The proof is the same as the proof of Theorem 2, except the convergence
of T3 in Equation (13).

Since Mn → ∞ and Mn = o(Tn), Tn also goes to infinity as n → ∞. In addition, by
Equation (10),

1

n1/2Tn

∫ Tn

0

1

ϕZ(t)
dt = 1

Tn

· n−1/2
∫ Tn

0

∫ Tn

0

1

ϕZ(t)
dt = 1

Tn

· O(1) → 0.

This means that all conditions in Theorem 1 are satisfied, so p̂ converges to p in probability. Then
T1 and T2 in the proof of Theorem 2 converge to 1 and f̂c(x), respectively. The proof of these
parts is exactly the same as that in the proof of Theorem 2.

The difficulty of providing the convergence of T3 comes from the fact that the integration
in Equation (13) is not bounded when x = a. Since Equation (13) is the same as Mn(p̂ −
p)/(π(1 − p)), it suffices to show that Mn(p̂ − p) converges to 0 in probability, in order to
show the convergence of T3. When the condition [10] is satisfied,

E(Mn(p̂ − p)) = (1 − p) · Mn

Tn

1

2π

∫ Tn

−Tn

exp(−ita) ϕc(t)dt

→ (1 − p) · 0 · fc(a) = 0.

In addition,

Var(Mn(p̂ − p)) = M2
n

2nT 2
n

∫ Tn

0

∫ Tn

0

Re{ϕV (s + t) + ϕV (s − t)} − 2Re{ϕV (s)}Re{ϕV (t)}
ϕZ(s)ϕZ(t)

ds dt

≤ 2

(
Mn

n1/2Tn

∫ Tn

0

1

ϕZ(t)
dt

)2

→ 0.

This implies Mn(p̂ − p) converges to 0, so does T3. Hence f̂c(a) = T1(T2 + T3) converges to
fc(a) in probability. �

Proof of Lemma 3 Note that

Bias(f̂X(x)) = Bias(p̂) + (1 − p)(E(T2) − fc(x)) + (1 − p)E(T3),

where T2 and T3 are the same as those in the proof of Theorem 2.
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From Lemma 1, the bias of p̂ is given by

Bias(p̂) = (1 − p)π

Tn

· 1

2π

∫ Tn

−Tn

ϕc(t) exp(−ita)dt.

Since fc is continuous, ϕc(·) is integrable. In addition, Tn goes to infinity as n → ∞. Hence, from
the inverse-Fourier transformation,

1

2π

∫ Tn

−Tn

ϕc(t) exp(−ita)dt → fc(a), as n → ∞.

i.e. regardless of fc, the bias of p̂ has the order O(T −1
n ), as n → ∞. In addition, from

Equation (14), we get

E(T3) = O(Bias(p̂)) = O(T −1
n ).

The order of E(T2) − fc(x) is determined by the tail property of ϕc; Again from the inverse-
Fourier transformation,

|E(T2) − fc(x)| =
∣∣∣∣ 1

2π

∫ Mn

−Mn

ϕc(t) exp(−itx)dt − 1

2π

∫ ∞

−∞
ϕc(t) exp(−itx)dt

∣∣∣∣
≤ 1

2π

∫ −Mn

−∞
|ϕc(t)| dt + 1

2π

∫ ∞

Mn

|ϕc(t)| dt = I1 + I2.

First, consider the case (B1). Then, for sufficiently large n,

I2 =
∫ ∞

Mn

|ϕc(t)|dt ≤
∫ ∞

Mn

d1t
−β1 dt = O

(
M1−β1

n ),

and by a similar computation, I1 can be easily shown to have the same order as I2.
Now, suppose that (B2) holds. When n is large enough,

I2 =
∫ ∞

Mn

d1 exp

(
− tβ1

γ1

)
dt

≤ d1

∫ ∞

Mn

(
t

Mn

)β1−1

exp

(
− tβ1

γ1

)
dt = O

(
M1−β1

n exp

(
−M

β1
n

γ1

))
,

and I2 has the same order as I1. This completes the proof. �

Proof of Lemma 4 From Equation (11), f̂X(x) can be expressed as

f̂X(x) = p̂δa(x) + (1 − p)(T2 + T3),

where T2 and T3 are defined in the proof of Theorem 2. Hence the variance of f̂X(x) has the form

Var(f̂X(x)) = (1 − p)2{Var(T2) + Var(T3) + 2Cov(T2, T3)}
+ {Var(p̂) + 2(1 − p)Cov(p̂, T3) + 2(1 − p)Cov(p̂, T2)}δa(x).

Note that Var(T3) = O(Var(p̂)) and Cov(p̂, T3) = O(Var(p̂)) from Equation (14). In addition,
by the Cauchy–Schwartz inequality,

|Var(T2) + Var(T3) + 2Cov(T2, T3)| ≤ 2{Var(T2) + Var(T3)},
and |Cov(p̂, T2)| ≤

√
Var(p̂)

√
Var(T2).

Hence we get Var(f̂X(x)) = O(Var(p̂)) + O(Var(T2)), as n → ∞.
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Suppose that (V1) is satisfied. Then, there exists a constant c > 1 such that 1/|ϕZ(t)| ≤
(1/d2)t

β2 for any t ≥ c. Note that ϕZ(t) is continuous and ϕZ(t) �= 0, 1/|ϕZ(t)|2 is also a contin-
uous function, hence is integrable on a compact interval [0, c]. From Equation (12) and Jensen’s
inequality,

Var(p̂) ≤ 2

nT 2
n

∫ Tn

0

1

|ϕZ(t)|2 dt

= 2

nT 2
n

[∫ c

0

1

|ϕZ(t)|2 dt +
∫ Tn

c

1

|ϕZ(t)|2 dt

]

≤ 2

nT 2
n

[∫ c

0

1

|ϕZ(t)|2 dt +
∫ Tn

c

t2β2

d2
2

dt

]
= O

(
n−1T 2β2−1

n

)
,

and similarly by Equation (15), Var(T2) = O(n−1M
1+2β2
n ). Finally, we get

Var(f̂X(x)) = O(n−1M1+2β2
n ) + O(n−1T 2β2−1

n ).

Now, consider the case (V2). We can also find a constant c such that |ϕZ(t)| exp(tβ2/γ2) > d2

for any t ≥ c. For any β2,

∫ Tn

c

1

|ϕZ(t)|2 dt ≤
∫ Tn

c

1

d2
2

exp

(
2tβ2

γ2

)
dt = O

(
Tn exp

(
2T

β2
n

γ2

))
,

and hence

Var(p̂) = O

(
1

nTn

exp

(
2T

β2
n

γ2

))
and Var(T2) = O

(
Mn

n
exp

(
2M

β2
n

γ2

))
.

In particular, when β2 ≥ 1, we can get a better upper bound of the variance; From the fact that
tβ2 ≤ t · T

β2−1
n for any 0 < t ≤ Tn, therefore

∫ Tn

c

1

|ϕZ(t)|dt ≤
∫ Tn

c

1

d2
exp

(
tβ2

γ2

)
dt

≤
∫ Tn

c

1

d2
exp

(
t · T

β2−1
n

γ2

)
dt = O

(
T 1−β2

n exp

(
T

β2
n

γ2

))
.

Combined with Equation (12), it gives

Var(p̂) = O

(
1

nT
2β2
n

exp

(
2T

β2
n

γ2

))
, and Var(T2) = O

(
M

2(1−β2)
n

n
exp

(
2M

β2
n

γ2

))
,

which completes the proof. �

Proof of Theorem 4 Define α = min(β1 − 1, 1). Let Mn = (γ2/4)1/β2(log n)1/β2 and let Tn =
(γ2/4)1/β2(log n)α/β2 . By Lemma 3 and the fact 0 < α ≤ β1 − 1, we can get

Bias2
(
f̂X(x)

)
= O

(
(log n)−2α/β2

) + O
(
(log n)−2(β1−1)/β2

) = O
(
(log n)−2α/β2

)
,

as n → ∞.
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Since α is at most 1, (2/γ2)T
β2
n = (1/2)(log n)α ≤ (1/2) log n, for any n ≥ 3. Then, from

Lemma 4, we can get

Var
(
f̂X(x)

)
= O

(
n−1T −2β2

n exp

(
2T

β2
n

γ2

))
+ O

(
n−1M−2(β2−1)

n exp

(
2M

β2
n

γ2

))

≤ O
(
n−1/2(log n)−2α

) + O
(
n−1/2(log n)−2(β2−1)/β2

)
= o

(
n−1/3

) = o
(
(log n)−2α/β2

)
, as n → ∞.

Here, we can see the bias term dominates the variance. Finally, we can get

E
(
f̂X(x) − fX(x)

)2 = Bias2
(
f̂X(x)

)
+ Var

(
f̂X(x)

)
= O

(
(log n)−2α/β2

)
,

as n → ∞. This completes the proof. �
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