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ABSTRACT

The Gaussian probability density function plays a central role in probability, statistics
and Fourier analysis. This paper presents formulas involving various combinations of
moments, derivatives, integral, products and convolutions of this function. The results are
useful in statistical curve estimation, but also have a beauty of their own.
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1. INTRODUCTION

The Gaussian, or Normal, probability density function is very special, both in prob-
ability theory and in statistics, because it is the limit law of the Central Limit Theorem,
see Bhattacharya and Ranga Rao (1976) for access to the large literature on this topic.
The main idea behind it is that sums of independent random variables, when properly
normalized, all tend to have the same limiting distribution, the Gaussian.

The Normal probability density function also plays an important role in Fourier anal-
ysis, because it is the unique fixed point of the Fourier transform isometry between L2 and
itself, see (7.6) of Rudin (1973). For other interesting characterizations and properties of
this function, see Patel and Read (1982).

In this paper some properties of this function are reviewed, and others are explored.
In particular explicit formulas for quantities involving various combinations of moments,
derivatives, products and convolutions are given.

The motivation for this investigation is recent work in statistical nonparametric curve
estimation. However, we were pleased to find the results have a simple and elegant math-
ematical structure, which we feel is of independent interest. The proofs are mostly based
on straightforward Fourier transform theory, and we feel they once again demonstrate the
utility of that methodology.

Applications of these results have become important in two aspects of curve estima-
tion. The first of these is the derivation of exact mean integrated squared errors for kernel
density estimation of normal mixture densities, see Marron and Wand (1992). This promis-
ing new tool is proving to be far more powerful and efficient than the currently widely used
Monte Carlo methods for assessing issues such as when, and how well, asymptotic analyses
describe the actual situation.

The second is for the analysis, and also implementation, of data based smoothing
parameter selectors. This area has recently seen a good deal of activity, and the proposal
of many new methods. A useful tool in the comparison of these is the asymptotic limiting
distributions, see Section 3 of Park and Marron (1990) for example (and for access to earlier
references). Results of this paper are useful for this because the constants found in those
distributions are usually of this form. In addition, some of the new smoothing parameter
selectors require calibration in terms of a reference distribution. A popular means of doing
this, see for example (2.10) of Park and Marron (1990), is to use the Normal scale family,
with some scale estimate, which again requires results of the type in the present paper for
implementation.

Notation and preliminary results are given in Section 2. Section 3 deals with moment
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results and Section 4 gives product formulas. In Section 5 convolution and integrals of
products are presented while Section 6 contains miscellaneous extensions related to results
from previous sections. For several of the results the application to curve estimation are
pointed out through remarks. All proofs are given in the Appendix.

2. NOTATION AND PRELIMINARIES

The standard Normal probability density function is defined by

φ(x) = (2π)−1/2e−x2/2.

A subscript means a rescaling of the type

φσ(x) = φ(x/σ)/σ. (2.1)

A random variable X has a Normal distribution with parameters µ and σ2, written as
X ∼ N(µ, σ2), if its probability density function in the variable x is φσ(x− µ).

The convention concerning derivatives and rescalings is that rescalings are done first,
so

φ(r)
σ (x) = (dr/dxr)φσ(x) = φ(r)(x/σ)/σr+1. (2.2)

Integrals with no explicit limits are understood to mean definite integrals from −∞
to ∞. Given functions f and g, the convolution (when it exists) is

(f ∗ g)(x) =
∫

f(x− u)g(u) du. (2.3)

This version of the definition of convolution is preferred by probabilists because f ∗g is the
probability density function of X + Y , where X and Y are independent random variables
having density f and g respectively.

For r = 1, 2, . . . , the “Odd Factorial” is defined by

OF(2r) = (2r − 1)(2r − 3) · · · 1 =
(2r)!
2rr!

. (2.4)

For r = 0, 1, 2, . . . the Hermite polynomials are defined by

Hr(x) = (−1)rφ(r)(x)/φ(x). (2.5)

A handy representation of φ(r)(x) is therefore

φ(r)(x) = (−1)rHr(x)φ(x) (2.6)
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from which it follows that

φ(r)
σ (x− µ) = (−1)rHr

(
x− µ

σ

)
φ

(
x− µ

σ

)/
σr+1. (2.7)

Another form (from Gradshteyn and Ryzhik, 1980, but observe that our Hermites are
equal to their’s with an argument of x/21/2 and multiplied by 2−r/2) is

Hr(x) = xr −OF(2)
(

r

2

)
xr−2 + OF(4)

(
r

4

)
xr−4 −OF(6)

(
r

6

)
xr−6 + . . . . (2.8)

where the sum is taken to [r/2] + 1 terms, and [·] is the greatest integer function. Useful
recursion formulas for these are (from 8.952 of Gradshteyn and Ryzhik, 1980):

Hr(x) = xHr−1(x)− (r − 1)Hr−2(x). (2.9)

(d/dx)Hr(x) = rHr−1(x). (2.10)

The y intercept (from 8.956 of Gradshteyn and Ryzhik (1980)) is

Hr(0) =
{

(−1)r/2OF(r) r even
0 r odd.

(2.11)

From (2.8) we have

(−i)rHr(ix) = xr + OF(2)
(

r

2

)
xr−2 + OF(4)

(
r

4

)
xr−4 + OF(6)

(
r

6

)
xr−6 + . . . (2.12)

where the sum is taken to [r/2] + 1 terms. Note that the coefficients are as for Hr(x)
except that all signs are positive.

From (2.6), (2.11) and (2.2) it follows that

φ(r)
σ (0) =

{
(−1)r/2(2π)−1/2OF(r)σ−r−1 r even
0 r odd.

(2.13)

3. MOMENTS AND RELATED QUANTITIES

Theorem 3. For σ > 0, X ∼ N(µ, σ2) and ν > −1,

E(Xν) =
∫

xνφσ(x− µ) dx =
∞∑

k=0

Γ(ν + 1)µν−2kσ2k

Γ(ν + 1− 2k)k!2k

where the first equality defines E(Xν), the νth central moment of X.

Corollary 3.1. For σ > 0, r = 0, 1, 2, . . . and X ∼ N(µ, σ2),

E(Xr) =
∫

xrφσ(x− µ) dx = (−iσ)rHr(iµ/σ).

See (2.12) for a means of representing these polynomials.
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Corollary 3.2. For X ∼ N(0, σ2), when r is even,

E(Xr) =
∫

xrφσ(x) dx = σrOF(r),

and when r is odd

E(Xr) =
∫

xrφσ(x) dx = 0.

Corollary 3.3. When r ≥ r′,∫
xrφ(r′)

σ (x− µ) dx = (−1)r r!
(r − r′)!

(iσ)r−r′H(r−r′)(iµ/σ).

Otherwise ∫
xrφ(r′)

σ (x− µ) = 0.

Again, see (2.12) for convenient representation.

Corollary 3.4. When r + r′ is even and r ≥ r′,∫
xrφ(r′)

σ (x) dx = (−1)r r!
(r − r′)!

σr−r′OF(r − r′).

Otherwise ∫
xrφ(r′)

σ (x) dx = 0.

Remark: This result, together with Theorem 4 appears in the limiting distribution of
Biased Cross-Validation, see for example Theorem 3.2 of Park and Marron (1990).

4. PRODUCTS

Theorem 4. For σi > 0, i = 1, . . . ,m,

m∏
i=1

φσi(x− µi) = (2π)1−m/2

(
m∏

i=1

σi

)−1

φσ̃(µ̃)φ˜̃σ(x− ˜̃µ)

where

σ̃ =

(
m∑

i=1

σ−2
i

)1/2

, µ̃ =
[∑∑

i<j
{(µi − µj)/(σiσj)}2

]1/2

,

˜̃σ = σ̃−1, ˜̃µ =
m∑

i=1

σ−2
i µi

/
m∑

i=1

σ−2
i .
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Corollary 4.1.

∫ m∏
i=1

φσi(x− µi) dx = (2π)1−m/2

(
m∏

i=1

σi

)−1

φσ̃(µ̃).

Corollary 4.2. For σ, σ′ > 0,

φσ(x− µ)φσ′(x− µ′) = φσ∗(µ− µ′)φσσ′/σ∗(x− µ∗)

where

σ∗ = (σ2 + σ′
2)1/2, µ∗ =

σ′
2
µ + σ2µ′

σ2 + σ′2
.

Corollary 4.3.

φσ(x)φσ′(x) = (2π)−1/2φσσ′/σ∗(x)/σ∗.

Corollary 4.4. For σ1, . . . , σr > 0,

r∏
i=1

φσi
(x) = (2π)(1−r)/2φ(

∏
i
σi)/(σ+)(x)/σ+,

where

σ+ =

 r∑
i=1

∏
j 6=i

σj

1/2

=

[(
r∏

i=1

σ2
j

) (
r∑

i=1

σ−2
j

)]1/2

.

Corollary 4.5.

φ(x)r = (2π)(1−r)/2φr−1/2(x)/r1/2.

Corollary 4.6. For σ1, σ2, σ3 > 0,

φσ1(x− µ1)φσ2(x− µ2)φσ3(x− µ3) = (2π)−1/2φσ∗∗(µ∗∗)φσ∗∗∗(x− µ∗∗∗),

where

σ∗∗ = (σ2
1σ2

2 + σ2
1σ2

3 + σ2
2σ2

3)1/2.

µ∗∗ = {σ2
1(µ2 − µ3)2 + σ2

2(µ1 − µ3)2 + σ2
3(µ1 − µ2)2}1/2,

σ∗∗∗ = σ1σ2σ3/σ∗∗,

µ∗∗∗ = (σ2
2σ2

3µ1 + σ2
1σ2

3µ2 + σ2
1σ2

2µ3)/(σ2
1σ2

2 + σ2
1σ2

3 + σ2
2σ2

3).
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5. CONVOLUTIONS AND INTEGRATED PRODUCTS OF DERIVATIVES

Theorem 5. For σ, σ′ > 0, and r, r′ = 0, 1, 2, . . .

φ(r)
σ (· − µ) ∗ φ

(r′)
σ′ (· − µ′)(x) = φ

(r+r′)
σ∗ (x− µ− µ′)

where σ∗ = (σ2 + σ′
2)1/2 as in Corollary 4.2.

Corollary 5.1. For r1, r2, . . . , rm = 0, 1, 2, . . .

φ(r1) ∗ φ(r2) ∗ · · · ∗ φ(rm)(x) = φ
(r1+r2+···+rm)

m1/2 (x).

Corollary 5.2. ∫
φ(r)

σ (x− µ)φ(r′)
σ′ (x− µ′) dx = (−1)rφ

(r+r′)
σ∗ (µ− µ′).

Remark: This result is used in the calculation of both asymptotic and exact mean in-
tegrated squared error formulas, as in Marron and Wand (1992). It also is used in the
calibration of many different “plug-in” smoothing parameter selectors, for example that
treated in Hall, Sheather, Jones and Marron (1991).

Corollary 5.3. For r + r′ even∫
φ(r)

σ (x)φ(r′)
σ′ (x) dx = (−1)(r−r′)/2(2π)−1/2OF(r + r′)/(σ∗)r+r′+1

where σ∗ is as in Corollary 4.2 and for r + r′ odd∫
φ(r)

σ (x)φ(r′)
σ′ (x) dx = 0.

Corollary 5.4. ∫
φ(r)(x)2 dx =

OF(2r)
π1/22r+1

.

Remark: This form appears in both the limiting distribution of the smoothing parameters,
and also in the data-based calibration, for both Smoothed Cross-Validation, as discussed
in Theorems 3.1 and 4.2 of Hall, Marron and Park (1992), and also for the main method
discussed in Park and Marron (1990), see Theorem 3.3 there.

Corollary 5.5. ∫
{φ(2) ∗ φ(2)(x)}2 dx =

105
29(2π)1/2

.

Remark: As with Corollary 5.4, this form also appears in both the calibration and the
analysis of many different types of recently proposed smoothing parameter selectors, see
Park and Marron (1990).
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Corollary 5.6. ∫
{φ(r) ∗ φ(x)}2 dx =

OF(2r)
(2π)1/222r+1

.

Remark: This also appears in both places in the method of Park and Marron (1990).

6. MISCELLANEOUS EXTENSIONS

Theorem 6.1. ∫ m∏
i=1

φ
(ri)
σi (x− µi) dx

= (2π)1−m/2φσ̃(µ̃)
r1∑

j1=0

· · ·
rm∑

jm=0

m∏
k=1

{(
rk

jk

)
Hrk−jk

(µ†k/σk)/σrk+jk+1
k

}
˜̃σ
∑m

`=1
j`OF

(
m∑

`=1

j`

)
where

µ†k = µk − ˜̃µ and OF(r) = 0 if r is odd

and σ̃, µ̃, ˜̃σ and ˜̃µ are as in Theorem 4.

Remark: This result is useful for exact mean squared error calculations in the estimation
of integrated squared derivatives of probability density functions.
Corollary 6.1.1.∫ m∏

i=1

φ
(ri)
σi (x) dx

= (2π)(1−m)/2
r1∑

j1=0

· · ·
rm∑

jm=0

m∏
k=1

{(
rk

jk

)
σ−rk−jk−1

k OF(rk − jk)
}

˜̃σ
1+
∑m

`=1
j`OF

(
m∑

`=1

j`

)
.

Corollary 6.1.2.∫ m∏
i=1

φ(ri)(x) dx

= (2π)(1−m)/2
r1∑

j1=0

· · ·
rm∑

jm=0

m∏
k=1

{(
rk

jk

)
OF(rk − jk)

}
m− 1

2 (1+
∑m

`=1
j`)OF

(
m∑

`=1

j`

)
.

Corollary 6.1.3. ∫
{φ(2)}2φ =

1
33/2π

.

Corollary 6.1.4. ∫
{φ(4)}2φ =

76
37/2π

.

Remarks: This appears in both the limiting distribution and the calibration of Smoothed
Cross-Validation, see Theorems 3.1 and 3.2 and (4.2) of Hall, Marron and Park (1992).
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Theorem 6.2. For k = 1, 2, . . . and r + r′ ≡ k (mod 2),∫
xkφ(r)(x)φ(r′)(x) dx

=(−1)(r
′−r+2k)/22−(r′+r+2k+2)/2π−1/2k!

×
∑∑

(p,p′)∈A

(
r

p

)(
r′

p′

)
(−1)(p−p′)/22(p+p′)/2OF(r + r′ − p− p′)/{(k − p− p′)/2}!

where

A = {(a1, a2) ∈ Z+ ×Z+ : a1 + a2 ≡ k (mod 2), a1 + a2 ≤ k, a1 ≤ r, a2 ≤ r′}

and Z+ is the set of positive integers. For r + r′ 6≡k (mod 2),∫
xkφ(r)(x)φ(r′)(x) dx = 0.

Corollary 6.2.1. For k = 1, 2, . . . and r + r′ ≡ k (mod 2),∫
xkφ(r)

σ (x)φ(r′)
σ (x) dx

= σ−(r′+r−k+1)(−1)(r
′−r+2k)/22−(r′+r+2k+2)/2π−1/2k!

×
∑∑

(p,p′)∈A

(
r

p

)(
r′

p′

)
(−1)(p−p′)/22(p+p′)/2OF(r + r′ − p− p′)/{(k − p− p′)/2}!

while for r + r′ 6≡k (mod 2), ∫
xkφ(r)

σ (x)φ(r′)
σ (x) dx = 0.

Corollary 6.2.2. For r + r′ odd,∫
xφ(r)

σ (x)φ(r′)
σ (x) dx = σ−(r+r′) (−1)(r−r′+1)/2(r − r′)OF(r + r′ − 1)

π1/22(r+r′+3)/2
,

while for r + r′ even, ∫
xφ(r)

σ (x)φ(r′)
σ (x) dx = 0.

Corollary 6.2.3. For r + r′ even and r + r′ > 0,∫
x2φ(r)

σ (x)φ(r′)
σ (x) dx = σ−(r+r′−1) (−1)(r−r′)/2{4rr′ − (r + r′ − 1)2}OF(r + r′ − 2)

π1/22(r+r′+4)/2
,
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while for r = r′ = 0, ∫
x2φ(r)

σ (x)φ(r′)
σ (x) dx = σ/(4π1/2),

and for r + r′ odd, ∫
x2φ(r)

σ (x)φ(r′)
σ (x) dx = 0.

Theorem 6.3. For σ, σ′ > 0,∫
x2φ(1)

σ (x)φ(1)
σ′ (x) dx = 3(2π)−1/2(σσ′)2/(σ2 + σ′

2)5/2.

Remark: This form comes up in the analysis and calibration of the smoothing parameter
factorization version of Smoothed Cross-Validation, see Theorem 1 of Jones, Marron and
Park (1991).

Corollary 6.4.1.∫
{xφ ∗ φ(1)(x)− 2xφ(1)(x)}2 dx = π−1/2{3(2)1/2/16− 4(6)1/2/9 + 3/2}.

Remark: This form appears in the limiting distribution of Least Squares Cross-Validation,
see Theorem 3.1 in Park and Marron (1990).

APPENDIX: PROOFS

Notation and Preliminaries:
A rescaling of our convolution defined at (1.3), that is used by Rudin (1973), is

(f ∗R g)(x) = (f ∗ g)(x)/(2π)1/2. (A.1.1)

This version of the convolution is cleaner and more convenient when dealing with Fourier
transforms, as done in these proofs, because fewer distracting factors of (2π)1/2 are needed
in the formulas. Rudin’s version of the Fourier transform of f is

FTR

f (t) = (2π)−1/2

∫
f(x)e−itx dx. (A.1.2)

Note that
FTR

φ(t) = φ(t). (A.1.3)

By 7.1d and 7.4c of Rudin (1973) (using Rudin’s notation of Dr = i−r(dr/dxr)),

FTR

φ(r)(t) = FTR

irDrφ(t) = irtrFTR

φ(t) = irtrφ(t), (A.1.4)
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and similarly, using 7.2a and 7.2d of Rudin (1973),

FTR

φ
(r)
σ (· −µ)

(t) = irtre−itµFTR

φ(σt) = irtre−itµφ(σt) = irtre−itµφ1/σ(t)/σ. (A.1.5)

where we have used the identity

φ(σt) = φ{t/(1/σ)}{1/(1/σ)}(1/σ) = φ1/σ(t)/σ. (A.1.6)

A related useful result, which follows from 7.4c of Rudin (1973), from (A.1.5) (with r taken
there as 0) and by completing the square, is

FTR

·rφσ(· −µ)(t) = (−i−1)r(dr/dtr)e−itµφ(σt) = ir(dr/dtr)φ(σt + iµ/σ)e−µ2/(2σ2).

Hence by (A.1.6) and (2.7)

FTR

·rφσ(· −µ)(t) =ire−µ2/(2σ2)φ
(r)
1/σ(t + iµ/σ2)/σ

=(−iσ)re−µ2/(2σ2)Hr(σt + iµ/σ)φ(σt + iµ/σ).
(A.1.7)

A closely related fact, which uses (A.1.5), is

FTR

·rφ
(r′)
σ (· −µ)

(t) = (−i−1)r(dr/dtr){ir
′
tr

′
e−itµφ(σt)} = ir+r′(dr/dtr){tr

′
e−itµφ1/σ(t)}/σ.

(A.1.8)
Proof of Theorem 3.

Using Nishimoto’s (1984) definition of a fractional derivative (Definition 1),

dν

dxν
φσ(x− µ) = (2πi)−1Γ(ν + 1)

∫ 0+

−∞
η−ν−1φσ(t + η − µ) dη

= (2π)−3/2(iσ)−1
∞∑

k=0

(−1)kΓ(ν + 1)
k!(2σ2)k

∫ 0+

−∞
η2k−ν−1 exp[{2(t− µ)η + (t− µ)2}/(2σ2)] dη

= φσ(x− µ)
∞∑

k=0

(−1)kΓ(ν + 1)
Γ(ν + 1− 2k)k!(2σ2)k

(
t− µ

σ2

)ν−2k

. (A.1.9)

Using 3.1.1 of Nishimoto,

dν

dtν
FTR

f (t) = (2π)−1/2(−i)ν

∫
xνf(x)e−itx dx.

Hence,

E(Xν) = (2π)1/2(−i)−ν

[
dν

dtν
FTR

φσ(·−µ)(t)
]

t=0

.
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From the first part of (A.1.7) and (A.1.9) we obtain

dν

dtν
FTR

φσ(·−µ)(t) = σ−1e−µ/(2σ2)φ1/σ(t+iµ/σ2)
∞∑

k=0

(−1)kΓ(ν + 1)
Γ(ν + 1− 2k)k!2k

(
t + iµ

σ2

)ν−2k

(1/σ2)k−ν .

Therefore, [
dν

dtν
FTR

φσ(·−µ)(t)
]

t=0

= iν(2π)−1/2
∞∑

k=0

Γ(ν + 1)µν−2kσ2k

Γ(ν + 1− 2k)k!2k

and the result follows.
Proof of Corollary 3.1.

This follows from Theorem 3, Γ(−r) = ∞ for r a non-negative integer and (2.12).
Proof of Corollary 3.3.

Using integration by parts∫
xrφ(r′)

σ (x− µ) = (−1)r′ r!
(r − r′)!

∫
xr−r′φσ(x− µ) dx.

Corollary 3.3 now follows from Corollary 3.1.
Proof of Theorem 4.

m∏
i=1

φσi
(x− µi) = (2π)−m/2

(
m∏

i=1

σi

)−1

exp

{
− 1

2

m∑
i=1

σ−2
i (x− µi)2

}

= (2π)−m/2

(
m∏

i=1

σi

)−1

exp

{
− 1

2

m∑
i=1

σ−2
i µ2

i

}
exp

{
− 1

2

m∑
i=1

σ−2
i (x2 − 2xµi)

}

= (2π)−m/2

(
m∏

i=1

σi

)−1

exp

{
− 1

2

(
m∑

i=1

σ−2
i µ2

i + ˜̃µ
m∑

i=1

σ−2
i

)}

× exp

{
− 1

2

m∑
i=1

σ−2
i (x2 − 2x˜̃µ + ˜̃µ

2
)

}

= (2π)1−m/2

(
m∏

i=1

σi

)−1

φσ̃(˜̃µ)φ˜̃σ(x− ˜̃µ).

Proof of Theorem 5.
First note that by 7.2c of Rudin (1973), by (A.1.5), and by Corollary 4.2,

FTR

φ
(r)
σ (· −µ)∗Rφ

(r′)
σ′

(· −µ′)
(t)

= FTR

φ
(r)
σ (· −µ)

(t)FTR

φ
(r′)
σ′

(· −µ′)
(t)

= ir+r′tr+r′e−it(µ+µ′)φ1/σ(t)φ1/σ′(t)/(σσ′)

= (2π)−1/2ir+r′tr+r′e−it(µ+µ′)φ(σ2+σ′2)−1/2(t)/(σ2 + σ′
2)1/2.
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But now using (A.1.5) the other way around,

FTR

φ
(r)
σ (· −µ)∗Rφ

(r′)
σ′

(· −µ′)
(t) = (2π)−1/2FTR

φ
(r+r′)
(σ2+σ′2)1/2 (· −µ−µ′)

(t).

Theorem 5 now follows from the Inversion Theorem 7.7c in Rudin (1973).
Proof of Corollary 5.2.

Using integration by substitution and the (skew) symmetry of φ(r′),∫
φ(r)

σ (x− µ)φ(r′)
σ′ (x− µ′) dx =

∫
φ(r)

σ (t)φ(r′)
σ′ (t + µ− µ′) dt

=(−1)r

∫
φ(r)

σ (t)φ(r′)
σ′ (µ− µ′ − t) dt

=(−1)rφ(r)
σ ∗ φ

(r′)
σ′ (µ− µ′).

So using Theorem 5,∫
φ(r)

σ (x− µ)φ(r′)
σ′ (x− µ′) dx = (−1)rφ

(r+r′)

(σ2+σ′2)1/2(µ− µ′).

Proof of Theorem 6.1.

∫ m∏
i=1

φ(ri)
σi

=
∫ m∏

i=1

φ(ri)
σi

(x− µ†i ) dx

= (−1)
∑m

i=1
ri

(
m∏

i=1

σ−ri−1
i

)∫ m∏
i=1

Hri

(
x− µ†i

σi

)
(2π)1−m/2φσ̃(µ̃)φ˜̃σ(x) dx

= (−1)
∑m

i=1
ri(2π)1−m/2φσ̃(µ̃)

(
m∏

i=1

σ−ri−1
i

)
[r1/2]∑
i1=0

· · ·
[rm/2]∑
im=0

(−1)
∑m

k=1
ik

×


m∏

j=1

OF(2ij)
(

rj

2ij

)
∫ m∏

j=1

(
x− µ†j

σj

)rj−2ij

φ˜̃σ(x) dx

(where [ · ] is the greatest integer function)

= (2π)1−m/2φσ̃(µ̃)

(
m∏

i=1

σ−ri−1
i

)
[r1/2]∑
i1=0

· · ·
[rm/2]∑
im=0

r1−2i1∑
j1=0

· · ·
rm−2im∑

jm=0

(−1)
∑m

k=1
ik

×

{
m∏

k=1

OF(2ik)
(

rk

2ik

)(
rk − 2ik

jk

)
(µ†k/σk)rk−2ik−jkσ−jk

k

}
˜̃σ
∑m

`=1
j`OF

(
m∑

`=1

j`

)

= (2π)1−m/2φσ̃(µ̃)
r1∑

j1=0

· · ·
rm∑

jm=0

m∏
k=1

(
rk

jk

)
σ−rk−jk−1

k

13



×
[(rk−jk)/2]∑

ik=0

{
(−1)ikOF(2ik)

(
rk − jk

2ik

)
(µ†k/σk)rk−jk−2ik

}
˜̃σ
∑m

`=1
j`OF

(
m∑

`=1

j`

)

= (2π)1−m/2φσ̃(µ̃)
r1∑

j1=0

· · ·
rm∑

jm=0

m∏
k=1

{(
rk

jk

)
σ−rk−jk−1

k Hrk−jk
(µ†k/σk)

}
˜̃σ
∑m

`=1
j`OF

(
m∑

`=1

j`

)
.

Proof of Theorem 6.2.
Set σ̃ = 21/2, µ̃ = µ1 − µ2, ˜̃σ = 2−1/2 and ˜̃µ = (µ1 + µ2)/2. Then by Corollaries 4.2

and 3.1,∫
xkφ(r)(x)φ(r′)(x) dx =(−1)r+r′

[
dr+r′

dµr
1dµr′

2

∫
xkφ(x− µ1)φ(x− µ2) dx

]
µ1=µ2=0

=(−1)r+r′

[
dr+r′

dµr
1dµr′

2

{
φσ̃(µ̃)

∫
xkφ˜̃σ(x− ˜̃µ) dx

}]
µ1=µ2=0

=(−1)r+r′

[
dr+r′

dµr
1dµr′

2

{
φσ̃(µ̃)(−i˜̃σ)kHk(i˜̃µ/˜̃σ)

}]
µ1=µ2=0

=(−1)r+r′

 dr+r′

dµr
1dµr′

2

φσ̃(µ̃)
[k/2]∑
j=0

2j−k

(
k

2j

)
OF(2j)(µ1 + µ2)k−2j




µ1=µ2=0

=(−1)r+r′
r∑

p=0

r′∑
p′=0

(
r

p

)(
r′

p′

)[
dr+r′−p−p′

dµr−p
1 dµr′−p′

2

φσ̃(µ̃)

]
µ1=µ2=0

×

 dp+p′

dµp
1dµp′

2

[k/2]∑
j=0

2j−k

(
k

2j

)
OF(2j)(µ1 + µ2)k−2j


µ1=µ2=0

.(A.1.10)

Repeated application of (2.6) shows that for r + r′ ≡ p + p′ (mod 2),[
dr+r′−p−p′

dµr−p
1 dµr′−p′

2

φσ̃(µ̃)

]
µ1=µ2=0

= (−1)(r
′−r+p−p′)/22−(r′+r−p−p′+2)/2π−1/2OF(r+r′−p−p′).

By expansion we obtain[
dp+p′

dµp
1dµp′

2

(µ1 + µ2)k−2j

]
µ1=µ2=0

=
{

(p + p′)! p + p′ = k − 2j
0 otherwise.

Hence, for p + p′ ≡ k (mod 2), dp+p′

dµp
1dµp′

2

[k/2]∑
j=0

2j−k

(
k

2j

)
OF(2j)(µ1 + µ2)k−2j


µ1=µ2=0
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= 2−(p+p′−k)/2

(
k

k − p− p′

)
OF(k − p− p′)(p + p′)!.

Combining these, (A.1.10) becomes

(−1)(r
′−r+2k)/22−(r′+r+k+2)/2π−1/2

∑∑
(p,p′)∈A

(
r

p

)(
r′

p′

)
(−1)(p−p′)/2OF(r + r′ − p− p′)

×
(

k

k − p− p′

)
OF(k − p− p′)(p + p′)!

=(−1)(r
′−r+2k)/22−(r′+r+k+2)/2π−1/2k!

×
∑∑

(p,p′)∈A

(
r

p

)(
r′

p′

)
(−1)(p−p′)/22(p+p′)/2 OF(r + r′ − p− p′)

{(k − p− p′)/2}!

as required.
Proof of Theorem 6.3.

By (2.7),
φ(1)

σ (x) = −xφσ(x)/σ2, φ
(1)
σ′ (x) = −xφσ′(x)/σ′

2
.

Hence by Corollary 4.3,

φ(1)
σ (x)φ(1)

σ′ (x) = (σσ′)−2x2φσ∗(0)φσσ′/σ∗(x).

By Corollary 3.2,∫
x2φ(1)

σ (x)φ(1)
σ′ (x) dx =(σσ′)−2φσ∗(0)(σσ′/σ∗)4OF(2)

=3(2π)−1/2(σσ′)2/(σ2 + σ′
2)5/2.
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