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Ratio functions for which nonparametric estimators have been considered include the hazard rate and
density under random censoring. One estimation method involves individual estimates of the
numerator and denominator. An alternative targets the entire function not the separate pieces. The
two estimators are not comparable in terms of Mean Integrated Squared Error. However, the second
type is seen to be more natural because it admits an elegant and useful martingale representation, and

also is pictorially more attractive.
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1. INTRODUCTION

Kernel type estimators of ratio functions, such as (a) the density under random
censoring (b) the hazard rate and (¢) the hazard rate under random censoring,
have been studied by several authors (eg. Watson and Leadbetter [11, 12], Rice
and Rosenblatt [4], Singpurwalla and Wong {7}, Tanner and Wong [8, 9] Marron
and Padgett [3] and Lo, Mack and Wang [2]). The kernel estimators of such ratio
functions involve evaluation of a cumulative distribution function (c.d.f.) estim-
ate. There are usually two choices of how this may be done, as shown in Section
2. resulting in two related but different estimators. Both are based on delta
sequence smoothing, introduced by Watson and Leadbetter [12], Foldes and
Révész [1], Rice and Rosenblatt [4], and Walter and Blum [10]. The aim of this
paper is the comparison of these two estimators. Asymptotic analysis of their
mean integrated square errors, as done in Section 3, shows that the variances are
the same but with regard to bias neither estimator is uniformly superior to the
other. In particular for some choices of the underlying density function bias of
one estimator is smaller, while for other choices bias of the other estimator is
smaller.

In this note we provide new insight into the choice between these two
estimators. We argue that one of the estimators is more natural. The basis of our
comparison of these estimators is their structure. One estimator may be viewed as
separately estimating the numerator and denominator of the target function,
while the other is motivated only in terms of the entire function. We consider the
latter type of estimator to be more patural in two senses. First, it admits an
important and simple type of martingale representation which the former does
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not seem to have and second, the “cffective kernel” of the latter type of estimator
is smooth while the “effective kernel” of the former has undesirable

discontinuities.

2. THE ESTIMATORS AND NOTATION;

Let X3, X3,..., X, denote the independent identically distributed (i.i.d.)
survival times of n items or individuals that are censored on the right by i.i.d.
random variables U,, U,, ..., U, which are independent of the X;’s. Denote the
common distribution function of the X{’s by F° and that of the Uys by H. It is
assumed that F° is absolutely continuous with density f° and that H is continuous.
The observed randomly right censored data are denoted by the pairs (X;, A;)
i=1,2,..., n where

X;=min{X?], U} and A;=Ixpy,.

The X;’s form an i.i.d. sample from a distribution F where 1 - F=(1 - F%(1—
H). A general formulation of the target function in all of the cases discussed in

Section 1 is n(x) where

(A~ Hx))f°(x)
= S 2.1
ARTEY 2D
for Q(x)>0, where Q(x) is a non-increasing function such that 0= Q(x) =1,
zeR.
Remark 2.1, (i) If Q(x)=1—F(x) then we have the case of hazard rate

estimation in the censored data setting. (ii) If Q(x) =1— H(x) then we have the
case of density estimation in the censored setting.

Remark 2.2. If the censoring random variable has all its mass at « then H(x) =0
for all x € R and F°(x) = F(x). (i) If Q(x) =1~ F(x) we have the case of hazard
- rate estimation in the uncensored data setting. Also note that (ii) if we take

Q(x)=1 we get the usual probability density.

To motivate estimators of n(x), define the sub-distribution functions

n(x

F*(x)= P[X;=x, A= 0] = j " (1= FO)) dH ()

F(x)=P[X;=x, A;=1]= f " (1= H(w)) dF°().

Clearly F(x)=F *(x) + F~(x). Define the empirical distribution functions

E(x)=F (x)+ F,(x),
where

Fi@)=n"' Ix=q(l—A),  F;(x)=n""3 Iy=gA.
P=1 =1

Let F)(x) be the Kaplan-Meier estimate of I°, and let H, be such that
(1 - Ex)=(1—-Fyx))(1-H,(x)). Observe that n 'LL,K,(x—X)A,
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provides an estimate of f°(x)(1 — H(x)), see Marron and Padgett [3]. We assume
Q(x) to be one of the functions considered in the Remarks 1 and 2. Define Q,,(x)
to be the empirical version of Q(k). Then the straightforward ratio estimator
NMa1(x) of n(x), obtained by plugging estimators into the numerator and
denominator, is

e AKL (- XD
) = 550 S

which is one of the estimators considered by Marron and Padgett [3] and Watson

and Leadbetter [11].
Define the cumulative target function

- [y [ s [0

An obvious estimate of I'(x) is its empirical version,

A-H,W) o« (*dFs@)
re=[ o = fQ,,(u)'

Now we consider n(x) as a function on its own, rather than a ratio and
approximate it by #*(x) = [ K,(x — u)n(u) du where K, (x — u) is a kernel. Then
find the estimator of n*(x). That is,

16 ~1°() = [ Kulw ~um() du = [ Ki(x ~ w) dr )
- f Ky(x — 1) T, (u) + f Kix —w) dT(@) ~T,)].  (2.3)

Such heuristic motivation gives the estimator

(2.2)

Mna(e) = [ Kn(x — w) T, (u)mn-*glmé—@;";)’% 2.4)

This is the estimator Tanner and Wong [9] have used and is one of the estimators
Watson and Leadbetter [11] and Marron and Padgett [3] have considered in their
settings, although no motivation of this type is given. The representation in (2.3)
shows that the approximation of the function n(x) by n*(x) is the bias part of the
error, while the random part of the error is | K,(x — u) d[['(«) — I,(x)]. In the
next section it is shown that the random part of the error admits a useful
martingale representation.

Note that the only difference between (2.2) and (2.4) is the argument of the
denominator; x for the former and X; for the latter. The main objective of this

: ‘note is to understand how these two possibilities compare.

3. COMPARISONS OF THE ESTIMATORS

3.1. Mean and Variance
First note that as O, converges to ( at the fast rate of n='2, (see for eg. Serfling
[5D), asymptotlcally Na1(x) and 7, ,(x) are equivalent to

fna(x)=n"" ;%_) and 7, ,(x)=n"" ;1 K;,(;(X?)Af
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THEOREM 1. Assume that the conditions of Theorem 2 of Tanner and Wong [9]
hold. Then,

B a(x) = 1001 = | K(u)[n(x iy 25— |

Var(#),, ,(x)) = (nh)*U’ K4 u) du:'n()c)[Q(Jc:)]“1 +o(mn'h7Y).
And

Eli0a) = 1G] = | K@)lnx ) = n()] d,

Var(i,2(9) = (o)™ [ K@) da [ (0@ + 0a )

Proof. See Watson and Leadbetter [11] and Tanner and Wong [9].

By Theorem 1, MISE(#, 1(x))=an"'h ™'+ b, +o(n*h™") and MISE(#,,.(x))
=an"'h'+ b+ o(n k), with

o={ [ Ko au| [ nHQEN W) s,
b= f Bix, hyw(x)dx, i=1,2,

where

Bi(x, ) = [ KG)|nx - hu)Q(;( f“) 1) du

and By(x, k) = [ K(w)[n(x ~ hu) — n(x)] du, and w(x) is a weight function which
is chosen so that the integrals are finite.

The difference in the asymptotic analysis of these MISE’s shows up in the bias
part. Insight into how these quantities compare is easily obtained by Taylor series
expansion. In particular, if # and Q are twice differentiable, then as A— 0,

Bi(x, ) = h*k*n"(x) + H*E*[n(x)Q"(x) + 2" (x)Q' ()@ *(x)
20K ()" (x)Q"(x) + 21" (x)n"(x) Q' ()] QT (x) + 0_(}14),
B¥(x, k) = h**n"(x) + o(h*),

where k = | (4*/2)K(u) du. Note that at an inflection point of #(x), Bi(x, h) =

R (x)Q"(x) + 21" (x) Q' (x)PQ ~*(x) + o(h*) and B3(x, h) = o(h"), so that 5,
is better. On the other hand, at an inflection point of Q(x), squared bias in
,1(x) will be smaller than 7, .(x) when (29'Q’'Y’Q"%+4n'9"Q'Q"' <0, but
close to 0. But this inequality is equivalent to [#'Q'][d/dx(n'Q)] <0. Since this is
sometimes true and sometimes false, the two estimators are not comparable in
terms of MSE. Which is better depends on the underlying setting, and the point -
where the estimation is being done.
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3.2. Martingale Representation

To see the martingale structure of the random error term, | K, (x —u) d[I'(x) —
I, (#)], note that

1
O, (u)

which is a stochastic integral of the predictable process Q, (1)~ with respect to
the martingale

n12(T, (x) — T(x)} = f LM,

— 12 =y xw ]
M) =0 1)~ | BrElar@),
with associated filtration F, = 0(Ijxp<u), fixt=uBi» Jy=ifo: 1 =i=n, u =x). The
weak convergence of the process #'?{[,(x) — T'(x)} is discussed in Chapter 7 of
Shorack and Wellner [6].

The elegance and power of this representation is seen in Wells [13] who used
the representation in (2.3) to show that (nA)"*{n, ,(x) — n(x)} converges weakly
to a Gaussian process on D[0, ). The main step of the proof is the application of
Rebolledo’s central limit theorem to

X T U
" | & K( h )
({10~ 7)) = [ s M, )

On the other hand, 7, ; has no such simple representation that the authors
have found. This makes 7,, not only more technically tractable, but also
provides an intuitive sense in which it is the more natural of the two. The
martingale approach is more natural as well since it reduces the estimation
problem to the classical White Noise problem. The White Noise problem is
perhaps one of the most studied problems in nonparametric function estimation.

3.3. Practical Considerations

Another difference in the above discussed estimators, which seems to have been
overlooked so far, is the form of their “effective kernel” which we define as
follows. Effectively one has to put the kernel function K,(x — X)[Q,(x)]™* and
K, (x — X)[0.(X;)] ! at each sample point respectively for the estimators 7,, (x)
and 7, ,(x)-and then average them together. So we call K, (x — X;)[1 — Q,(x)]™*
< and K,(x — X)[1— Q. (X;)]™? the effective kernels of the estimators 7, ,(x) and
N.2(x) respectively. To bring out the difference between these two types of
effective kernels we consider the special case where H(x)=0 for all xe # and
0,(x)=1—F,(x). This difference is made evident in Figure 1. The effective
kernels are shown as functions of x, the location of estimation. They are shown
for observations X,, X,, X; in the locations represented by the vertical lines.
Effective kernels are shown, centered at both X, and at X,. The dotted lines are
the 7, kernels, while 7, kernels are shown as dashed lines. Note that both
types of kernels get larger with increasing x, which reflects the fact that 1 — F,(-)
is a decreasing function. Disturbing features of the effective kernel of 7, , are
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Figure 1. Effective kernels for 5, ; — dotted lineé; 1,2 — dashed lines, vertical lines are location of the
data points.

the jump discontinuities at each of the sample observations caught in the window
width of the kernel (caused by the discontinuities in 1— F,(x)). On the other
hand the effective kernel of 7, , is a smooth curve. Thus 7,,, will give a smooth
estimate of 7, while the estimator 7, ; always results in a discontinuous estimate
of #. This is an undesirable property for a smoothing method, which we view as
another considerable disadvantage of 5, ; with respect to 7, ,.
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