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Visual Error Criteria for Qualitative Smoothing

J. S. MARRON and A. B. TSYBAKOV*

An important gap, between the classical mathematical theory and the practice and implementation of nonparametric curve estimation,
is due to the fact that the usual norms on function spaces measure something different from what the eye can see visually in a
graphical presentation. Mathematical error criteria that more closely follow “visual impression” are developed and analyzed from
both graphical and mathematical viewpoints. Examples from wavelet regression and kernel density estimation are considered.

KEY WORDS: Bandwidth selection; Nonparametric curve estimation; Wavelet regression.

1. INTRODUCTION

Smoothing methods for nonparametric curve etimation,
including density estimation (see Silverman 1986 for a good
introduction ) and regression (see Eubank 1988, Hirdle 1991,
Miiller 1988, and Wahba 1991, for example), provide effec-
tive tools for graphical data analysis. Although there is a
large theoretical literature on this topic, much of it is not
particularly useful for understanding issues important to ap-
plications. One reason for this is that mathematical theory
is typically based on error criteria that measure distance be-
tween curves (e.g., a ““true curve” and an “estimate”), in
terms of classical mathematical norms on function spaces
(e.g., L', L?, or L*®). This can be quite inappropriate from
a graphical viewpoint, because the eye does not work in this
way, so one is led away from a visual notion of distance
between curves. A dramatic example of this was provided by
Kooperberg and Stone (1991), where a picture similar to
Figure 1 is presented.

The estimators in Figure 1 have not been constructed from
data but instead are carefully chosen Normal mixture den-
sities. Table 1 shows some of the classical L? distances be-
tween the true curve in Figure 1 and each of the estimates.

Note that with respect to any of the usual integral norms,
estimate 1 is closer to the true curve (because the norms
“feel” both spikes when comparing estimate 2 to the true
curve). But in terms of visual impression, estimate 2 is much
more appealing. The reason is that estimate 2 captures the
important qualitative feature of the ‘“bump” on the right
side, although the location of the bump is not quite correct.
The conventional mathematical approach to measuring error
in curve estimation clearly gives the wrong answer concerning
which estimate is “best.”” An exception to this is situations
where peak locations are crucial (e.g., in spectroscopy), as
pointed out by L. Tierney. But in the spectral analysis of
time series, the presence and size of peaks can be a more
important issue than their precise location.

Ideas of the type dramatized in Figure 1 have motivated
the young field of “qualitative smoothing.” This is a math-
ematical theory that attempts to study curve estimation, not
through norms on function space but instead through qual-
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itative features; for example, defining a “good” estimator to
be one that has the correct number of modes (see Mammen
1991) or inflection points (see Cuevas and Gonzales Man-
tiega 1992). These are good first attempts at mathematically
quantifying visual impression as to comparison of curve es-
timators, but they do not go far enough. In particular, there
are many possible estimates with the right number of modes
(or inflection points), some of which will be visually closer
than others, because the modes are more nearly in the correct
locations with more accurate heights. A deeper mathematical
quantification that addresses this issue is needed.

In Section 2 we develop some nonstandard mathematical
error criteria for curve estimation, which in our opinion fol-
low visual impression much more closely in assessing the
distance between two curves. In particular we define “sym-
metric error criteria,” SE,, SE,, and SE,, which give per-
formance that is much closer to “what the eye sees” in the
example of Figure 1 (see Table 2).

Note that these error criteria all show that estimate 2 is
closer to the true curve, which is the opposite conclusion
from Table 1.

In Section 3 we focus on the specific problem of smoothing
parameter selection (which is fundamental to graphical ap-
plications of curve estimation). We consider several chal-
lenging examples of curve estimation and compare the
behavior of estimates with the smoothing parameter mini-
mizing certain criteria. By “challenging,” we mean the ex-
amples where L? criteria do not give “visually” adequate
quantification of the error. We illustrate there reasons why
we prefer SE, to SE,; or SE_,. We also see that there are some
situations where SE, also does not match ‘visual impres-
sion,” especially that of an experienced data analyst. In par-
ticular, in situations where there is not information present
in the data to recover all features of the true underlying curve,
an asymmetric error criterion is preferable.

Hence our final recommendation for error criteria comes
in two parts:

1. When the goal is ““the estimate should capture as many
of the qualitative features of the data as possible,” we prefer
the criterion SE,.

2. For the different goal of “duplicate the choice of an
experienced data analyst,” we prefer an asymmetric criterion
discussed in Section 3.

Section 4 provides some asymptotic analysis of some of
these new error criteria, including description of their rela-
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Figure 1. Kooperberg Stone Example, Showing That Classical Distances
are Different From ‘‘Visual Distance.”’

tionship to conventional asymptotic analysis. It is seen that
both suggested error criterion are rather tame in nature, being
analogous to using a weighted version of L2.

Although these criteria work well in a visual sense, they
are not ideal for all statistical problems. In particular, if a
regression is to be used solely for prediction purposes, then
the L? fit has important optimality properties and is pref-
erable to those presented here.

Approaches to related problems may be found in the work
of Bookstein (1986), Ripley (1986), Kendall (1989), Nielsen
and Foley (1989), and Baddeley (1993).

2. SOME NONSTANDARD ERROR CRITERIA

Figure 2a gives insight as to why the usual norms are in-
appropriate in comparing the two estimates presented in
Figure 1. Note that L', L%, and L* are all based on the
vertical distances between the curves (represented by the thin
vertical lines). But the eye uses both horizontal and vertical
information. A mathematical method for capturing this is
to treat the curves not as functions of a single variable but
instead as sets of points in the plane. For example, a given
continuous function f : [a, b] = R can be represented by
its “graph,”

Gr={(x,y): xE[a,bl,y =f(x)} CR?

(Gyis the set in the plane-shaded black in a plot of the func-
tion f( x)). This allows replacement of the vertical distance
between the true curve f( x) and an estimate f( x), by some
planar distance between the sets of points Gyand Gj.

As “distances between sets” may not be such a familiar
notion, we first review the standard Hausdorff distance (see,

Table 1. Some Classical Distances
Between the True Curve and the
Two Estimates in Figure 1

Estimate 1 Estimate 2
L .048 .069
L2 .073 115
L= .308 .393
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Table 2. New Measures of the
Distances Between the True
Curve and the Two
Estimates in Figure 1

Estimate 1 Estimate 2
SE, .0536 .0506
SE; .0576 .0516
SE,, .0527 .0408

for example, Sendov 1990). The basis of this is the notion
of the distance from a point to a set:

d((x,9),G)=inf [[(x,y) — (X, )2
(x",y)EG

that is, the shortest distance from the given point (x, ) to
any point in the closed set G, where | - ||, denotes the usual
euclidean distance (chosen over other possibilities because
this is visual distance in the plane). Distances from the points
in the set G, to the set G, can then be combined into the set
of distances

m((;la GZ) = {d((xa y)a GZ):(xa )’)E Gl}

T T T T

1.0

True Curve

q: - o semm————— - Estimate 2
o . .

1.0

True Curve

Estimate 2

X

(o)

Figure 2. The Difference Between (a) “‘Vertical Distance,” as Classically
Used, and (b) “'Visual Distance,”’ as Quantified Here.
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Some of the distances in D (Gegimate 25 GTrue Curve) aT€ TEP-
resented by the arrows in Figure 2b (the representation is
not exact because of discretization, as discussed at the end
of this section). These distances are then combined to give
the Hausdorff distance as

dy(Gy, G3) = max{sup(D (G, G2)), sup(D (G, G1)) }.

The Hausdorff distance, dy(Gy, Gy), is an improvement
over the L? norms, in the sense that it accounts for both
“vertical” and “horizontal” information about the deviation
of a curve estimate f from the true curve f But it has the
disadvantage that it inherits the sometimes unappealing
characteristics of sup type norms, that it only measures error
at the worst location and totally ignores error elsewhere. (The
fact that this can be quite different from what the eye sees”
is illustrated clearly in Figure 5.) Hence alternate methods
of basing error criteria on the sets D(G,, G,) and D(G,,
G,), which provide a more complete summary of the devia-
tions, are considered as well. In our applications, G; and G,
are the graphs of some functions, say f; and f;. A class of
summaries of D(G,, G,), which yield asymmetric “visual
error” criteria, are

/i

b 1
VE(f; -»fz)=[ [ e nen, Gprad

where i = 1, 2, oo (replacing the integral by the sup norm
for i = o0), which represent the various integral norms of
the thin arrows in Figure 2b.

For some (but as seen in the next section, not all) purposes,
it is useful to work with “symmetrized versions” of the VE;.
In particular, the symmetric error criteria in Table 2 are

SE,(/1,.£2) = VE\(/i > £2) + VEi(/2, = /1),
SE>(f1,5) = [VE2(/i = £2)® + VE2(f, = £1)?1'/,

and
SEoo(fi aﬁ) = dH(Gfl? sz)
= max{ VE,, (fi = £2), VEi,(, > f1)}.

Many other error criteria can also be constructed from
the VE;; for example, by taking various sums and suprema,
most of which will give better visual assessment of the per-
formance of the curve estimators than the classical L', L2,
and L* norms. But observe that these are different from
most (except dy) of the conventional notions of distance
between sets, because heavy use is made of the fact that G,
and G, are the graphs of functions (in particular, each x
appears once and only once). For this reason SE,; and SE,
are not directly applicable to the apparently related problem
of measuring distances between arbitrary sets in the plane,
although dy is well known. An approach to this problem is
the distance proposed by Baddeley ( 1993), which is another
integrated alternative to the Hausdorff distance.

Note that SE, and SE, are not “distances” on the space
of functions, because they do not satisfy the “triangle in-
equality.” For example, let [a, b] = [0, 1], fi(x) =—1, fr,(x)
= sin(2wkx), and f3(x) = 1. Consider first i = 1. The in-
tuition behind this example is that each point of both f; and
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also f; are close to some point of f;, but that f, and f; are
“very far from each other.” Note that VE, (f; = f3) = VE, (5
— f1) = 2, and that by taking k large enough, VE,(f; = f,)
= VE,(f; = f2) can be made arbitrarily small. But

VE(f, = fi) = VE\(f; > /1)
= J;l [1 £sin(2wkx)] dx = 1.

Hence
SE|(f1,/3) =4>2=1+ 1~ SE|(/i, /) + SE|(f2, /3).

With slightly more work, this same example also shows that
SE, also does not satisfy the triangle inequality.

To cover the case of discontinuous f(important, for ex-
ample, in image processing), it is convenient to assume that
fis a set-valued function. For example, when f has only
finitely many discontinuities, it is sensible to define the
“value” of fat a discontinuity point x to be the set

{z€R:min(f(x — 0), f(x + 0))
= z=max(f(x—0),f(x+0))}.

In other words, we suppose that f : [a, b] > B(R), where
B(R) is the collection of all Borel subsets of R, and define

Gr={(x,y): x€E[a,bl,y € f(x)}.

The other definitions then carry over in a straightforward way
if we take d((x, fi(x)), G,) to mean supyes,(x) d((X, ¥), G2).

F. Gotze and others have pointed out that our distances
are similar in spirit to the Prokhorov distances between cu-
mulative distribution functions. But this is different in that
the distances in D(G,, G,) and D(G,, G,) are essentially
measured along normal vectors versus the 45-degree vectors
that are implicit in Prokhorov distance.

It is often useful to think of graphical smoothing methods
in the case of continuous functions, but practical imple-
mentation requires discretization. Here the common practice
of constructing curves for plotting on an equally spaced (with
grid spacing Ax, say), compact grid of x locations, say X6,
is followed. Denote the discretized version of a graph G of
a function f(x) by GF* = {(x, f(x)): x € % }. The dis-
cretized version of VE;(f; = f,) is given by

1/i

VEP(f > f) = | Ax 2 d((x, fi(x)), GF*7)

XEX

Such discretized measures are used in all examples in this
article, where X is an equally spaced grid of 400. It is because
of this discretization (and because of the aspect ratio in the
plots) that the arrows in Figure 2b are not exactly perpen-
dicular to the curves.

The error criteria VE; and SE;, i = 1, 2, o0, all depend
heavily on the relative units of x and y. For example, in
Figure 2 the units shown will give results different from
“visual impression,” because d will put much more weight
in the x direction. For this reason we recommend working
with rescalings of x and y. The goal of visual impression is
best served by something in the spirit of linearly transforming
x and y so that both [a, b] and [inf,cxf/(X), Supxex/(x)]
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Figure 3. Kernel Density Estimation, With Different Bandwidths Applied to Same Pseudodata Sets, Showing That *‘Visual Choice” is Different From
‘Optimal With Respect to the Usual Norms.”’ Figure 3a shows a family of estimates, indexed by the bandwidth, from undersmoothed to oversmoothed.

Remaining figures show estimates using various optimal bandwidths.

are mapped to [0, 1]. Note that the L? errors also depend
on relative units, except in the special case of L' when the
estimate / and the true curve fare both probability densities
(see Devroye and Gyorfi 1985).

All examples here are given for one-dimensional curve
estimates. But all these ideas can be generalized in a straight-
forward way to estimation in higher dimensions.

3. VISUAL ERROR IN SMOOTHING
PARAMETER SELECTION

Practical use of any smoother (i.e., nonparametric curve
estimator) requires choice of some smoothing parameter.
There has been much work done on methods that use the
data in this choice (see, for example, Jones, Marron, and
Sheather 1992 and Marron 1988). But a trial-and-error visual
fit (especially by an experienced analyst ) still remains a very
effective method of choosing the smoothing parameter.
Nearly all of the theoretical work on smoothing parameter
selection is based on assessing error through norms such as
L', L2, or L°, which is a drawback when these behave dif-
ferently from visual choice. Other common criteria, such as
Hellinger and (entropy-based ) Kullback-Leibler distances

do not overcome this difficulty, and in fact are often even
less suitable, because they place too much weight on tails,
as noted by Hall (1987).

To address this problem, we have experimented with the
aforementioned measures of visual fit, in a number of dif-
ferent examples, in the particular cases of kernel density es-
timation and of wavelet regression estimation, but it is clear
the ideas apply generally. Our first guess was that the sym-
metrized criteria, SE;, i = 1, 2, co, would be most sensible,
but we found that in many situations our “visual favorite”
was more along the lines of the asymmetric VE;.

In Figure 3 we consider kernel density estimation (see
Silverman 1986 or Sec. 4 for a formal definition) using a

“Gaussian kernel function, for different bandwidths, based

on a single simulated data set of size # = 1,000. The under-
lying true density is Normal Mixture #14 from Marron and
Wand (1992). Note that the smaller bandwidths /4 give es-
timates that are rougher and more wiggly because they are
too strongly influenced by sampling variability, and the larger
ones give results that are smoother although at the expense
of smoothing away some of the features of the true underlying
curve. A range of such estimates is shown in Figure 3a. As
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Figure 4. Asymmetry of Visual Error Criteria. Distances in D(G;, Gy)
and D(G,, G;) are represented by small arrows in (a) and (b).

noted earlier, choice of the amount of smoothing (i.e., the
bandwidth #), is a well-known hurdle in the practical use of
this and other smoothing methods. Bandwidth selection is
especially challenging in this case, because for best results in
estimating this particular density, one should use an esti-
mator with “location varying smoothing.” (Clearly, a rela-
tively larger bandwidth is desirable on the left side, and
smaller one on the right side.) But before using such a com-
plicated method, one needs to see the need for it, based on
the simpler global bandwidth smoother shown here so it is
important to study global bandwidth selection even in such
challenging settings.

To see how “visual impression” can be asymmetric in
nature, compare the curve estimates shown in Figure 3, b-
d. Figure 3b presents the estimator with the L? optimal
bandwidth, which clearly is visually inappropriate. In par-
ticular the resulting estimate is ““too rough” on the first two
peaks (which represent three-quarters of the picture!), be-
cause the L? distance is dominated by the behavior at the
last three peaks and the valleys between. The SE, optimal
bandwidth choice in Figure 3c is an improvement, but is
still rougher than most data analysts would, choose in our
opinion. An estimator based on a bandwidth that we believe
more closely models the choice of an experienced data analyst
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is that shown in Figure 3d, where the bandwidth is the min-
imizer of the VE,(f — f) criterion. Although the SE, op-
timum does a fine job of recovering the spikes on the right
side, note that this is quite different from one’s intuitive de-
sires, because with only # = 1,000 observations there is a
limit as to how much of these smaller spikes can be recovered
from the data. The VE,(f — f)-optimal estimate is less
efficient at recovering the thin spikes, while sensibly trading
off this aspect of the picture for good overall behavior.

The asymmetry in these VE is demonstrated in Figure 4.
Figure 4a graphically illustrates the distances D (G}, Gy). Note
that the magnitude of the (difficult to recover) thin spikes
in f( x) are not important factors and thus do not contribute
to VE,(f — f). On the other hand, the distances D(Gy,
G?7), shown in Figure 4b, are strongly affected by the (visually
irrelevant, for moderate sample sizes) heights of the narrow
spikes, which is why VE,(f—> f) is clearly inappropriate in
this case. But VE,(f = f) does not solve all problems, and
in particular its analog of Table 2 shows that in Figure 1,
estimate 1 is closer to the true curve in this sense (although
estimate 2 is closer in the sense of VE,(f — f)). Our pref-
erence on the basis of this experience is for the criterion
VE,(f — f) in situations where it is desirable to duplicate
the choice of an experienced data analyst in “recovering only.
those features of the true curve that can be well obtained
from the data at hand.” On the other hand, we prefer SE,
in the much different situation where ““‘the estimate should
reflect as many qualitative features of the true curve as pos-
sible.”

Figure 3c also shows that the symmetrized criterion
SE,( f, f) behaves more like the inappropriate L2 optimal
than like VE,(f — f). Pictures for SE, and SE, contain a
similar lesson.

The reason that we prefer VE, and SE, to VE, and SE, is
that the former summarize the distances in D (G}, Gy) (and
in D(Gy, Gy)) in a way which is closer to visual impression,
because VE, “feels the larger distances more strongly.” For
example, note that in Table 2, the SE; distances tell the vi-
sually clear story less strongly than do their SE, analogs.

The reason that we prefer VE, and SE, to VE_ and SE_,
is demonstrated in Figure 5. Each part of Figure 5 shows a
regression problem, with true underlying regression curve,
f(x), a step function. A sample, (X;, ¥;),i=1,..., 100,
where X;' ~ U(0, 1), and Y;| X; ~ N(f(X;), (.1)?), was
generated. We then attempted to recover f( x) from the data
using a Haar wavelet regression estimator. This estimator is
a particular type of “orthogonal series” estimator, with in-
teresting properties, especially when f( x) has jumps, as here.
(See Donoho and Johnstone 1992 for interesting discussion
and references to statistical aspects of this estimator and
(1.1.16) in Chui 1992 for the Haar basis.) Because wavelet
estimators require equally spaced ‘“‘design points,” x;, we
“binned” the data to 64 equally spaced points, by averaging
the Y; in each bin. The result of this binning is shown by
dotted-line segments that interpolate the data. Figure Sa
shows the estimator, where only coefficients below a certain
frequency are used (and is the best of that type). Figure 5b
shows the estimator, using the “hard thresholding” idea of
Donoho and Johnstone (1992), and their automatic thresh-
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Figure 5. Haar Wavelet Regression Example, With Estimators. (a) Naive low-frequency reconstruction without the top 3 rows; (b) Donoho-Johnstone

thresholded; (c) four times the Donoho-Johnstone threshold.

old method “wave shrink.” The visual fit was not as good
as we had hoped, so we tried other thresholds as well, with
a good result achieved in Figure 5c using four times the sug-
gested threshold.

The estimate in Figure 5c is clearly a visually superior fit
to that in Figure 5b, but the L? error is actually worse. This
is because the unsightly blips in Figure 5b have less effect
on L? than the rightward shift in the location of the jump
in the Figure Sc estimates. On the other hand, VE;( =1
again gives the correct (from a visual point of view) com-
parison of the two estimates. The smoothing parameter se-
lector “wave shrink” has some excellent asymptotic prop-
erties with respect to L2, so it is not surprising that it works
well in that sense. But as L? is clearly different from visual
impression in this case, it is of interest to develop smoothing
parameter selectors that optimize criteria related to VE;( f
- /).

Figure 5, a and c, addresses two issues. The first is the fact
that various “thresholding” methods can give better perfor-
mance than simply deleting all high-frequency terms. (This
is intuitively clear and was well discussed in Donoho and
Johnstone 1992.) The second is the choice of VE,( =N,
as opposed to VE_(f — f). Although it is visually clear

that the estimate in Figure 5c is superior to that in Figure
5a, note that VE_ (f — f) gives the reverse ordering. The
reason is that VE,(f — f) feels only the worst distance in
D(Gy, Gy) (at the lower part of the jump in both cases),
thus ignoring the fact that the estimate in Figure 5a is inferior
at most other locations. But VE,(f — f) corrects this by
including error from all locations in its integral.

C. J. Stone has pointed out a situation in which the effec-
tiveness of SE, in ‘“capturing qualitative features” needs
careful interpretation. The essence of this idea is demon-
strated in Figure 6, which again shows a “true curve” and
some “estimates” (again constructed only from shifts and
scales of Normal mixture densities and not from actual es-
timates based on real data).

Note that in terms of any of our visual error criteria, es-
timate 1 is closer to the true curve. But if one cared only
about qualitative features, such as the number of modes,
then estimate 2 could be viewed as the better estimate. This
shows that our preference for SE,, when qualitative features
are of interest, in fact represents some compromise between
qualitative features and “goodness of fit.”

We view the criteria proposed in this article only as starting
points and believe that many improvements are possible.
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Figure 6. Stone Example Showing That the Symmetrized Visual Error
Criterion SE, Does not Always Capture Strictly Qualitative Features, But
Instead Provides a Compromise Between Qualitative Features and Good
Fit.

D. Donoho has proposed making these criteria more qual-
itative (e.g., addressing the problem raised in Fig. 6) by “not
allowing reuse of arrow heads.” For example, in Figure 2b
note that arrows from both sides of the small bump in the
estimate go to essentially the same points on the left side of
the small bump in the true curve. Qualitative improvement
may be obtained by not allowing this, by some method. In
conversation with F. Natterer, another possibility was dis-
cussed, which was to apply these same visual criteria not just
to the curves, but also to the derivative curves (i.e., to get
visual analogs of Sobolev distance). This also could address
the issue raised in Figure 6, because the derivative of estimate
1 is far different from that of the true curve.

4. MATHEMATICAL ANALYSIS

In this section we explicitly analyze the criterion VE in
the context of kernel density estimation, but very similar
ideas apply also to the other criteria discussed here and to
other curve estimation settings as well. Many extensions (e.g.,
weakening of the assumptions) are straightforward but are
not pursued here to avoid obscuring our main points. The
kernel density estimator is defined by fu(x)=n"'2TL, Ky(x
— X;), where X, . .., X, are a random sample from f( x),
and K;,(+) = K(-/h)/h, for a symmetric probability density
K, and a “bandwidth” & = h, > 0.

For simple asymptotics we use the following technical as-
sumptions:

Al. K s twice continuously differentiable and has com-
pact support.

The second derivative K” is Lipschitz continuous
on R.

[ K(u)du=1, [ uK(u)du=0, [ u’K(u) du# 0.
h,—> 0, nh, = o0 asn —> ©.

The density f( x) is twice continuously differentiable
on R.

A2

A3.
A4
AS.

Under A1-A5, we have, for every x, (see Silverman 1986,
for example),
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nh, 12
(f(xo)(fK(u)zdu))
- | P 2 £
x (B0~ f0) =5 o) [ sk au) ) 5

N(0, 1) (1)

as n—> oo, where % denotes the convergence in distribution.
This shows that a small bandwidth results in high variance,
quantifying the roughness in the “undersmoothed” part of
Figure 2, and that a large bandwidth results in high bias
(worse for more curvature in /'), which quantifies the ten-
dency to smooth away features of f seen in the “over-
smoothed” part of Figure 2. The convergence rate of f.to f
is optimized if

A6. h, = hon~'/3, for a constant Ay > 0.

Under A1-A6, we have

n25(fux0) — f(%0)) = N(b(x0), a2(30)),  (2)
where
2
b(xo) =%f”(xo)fu2K(u) du
and

o2(x0) = Zl;f(xo) [ e au.

Note that the asymptotic distribution results (1) and (2)
work only “vertically,” measuring error as in Figure 2a. Here
we analyze the asymptotic behavier of the more visual error
criteria, VE,(f, = f) and VE,(f — ). This is essentially
determined by the asymptotics of d((x, f( x)), Gz,) and d((x,
7(x)), Gp).

For fixed x, € R, consider the random variables
dn(x0) % d((x0, (X)), Gy,)
and
d% (x0) £ d((X0, Ju(X0)), Gy),

whose distributions are related to the limiting distributions
in (2) through the following proposition.

Assume A1-A6. Then

[ x0) — ()| X
Vit (7))

Proposition 1.

n2/5(dn(x0) - (3)

and

(4)

nZ/S(dﬁ(xo) _ |f;z(x0) — f(xo)| ) 2 0,

V1 + (f'(%0)?)

asn—> 00.
Proof of this proposition is given in the Appendix.
Using (1) and (4), we find that the mean visual squared
error E(VE,(f, = f)?) is
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E(VEy(J, — f)?) = f d((x, 1(x)), G)? dx 5. CONCLUSION

. We have investigated methods for measuring differences

= f E([d%*(x)]%) between curves that correspond much more closely to visual
choice than to the usual norms on function space. Our final
~ [E ((fu(x) = f(x))?) d recommendation for error criteria comes in two parts:
1+ (f'(x))?

1. When the goal is “the estimate should capture as many
b%(x) + o%(x) of the qualitative features of the data as possible,” we prefer
1+ (f'(x))? dx, the criterion SE,.

2. For the different goal of “duplicate the choice of an
which gives useful intuitive information. For example, as experienced data analyst,” we prefer the criterion VE,(f
seen in Figure 3, there is substantially less error (both vari- — f).
ance and bias) at x locations where |f’(x)]| is large (i.e., f
is steep ), but roughly the usual error at locations where f”(x) APPENDIX: PROOF OF THE PROPOSITION
~ 0 (ie., fis flat). This proof is based on analyzing the value X,, the element of

Note that the final expression in the foregoing display is  G; that is closest to (xp, f( X)), and the value x*, the member of
the standard asymptotic representation of the weighted mean G, that is closest to (Xo, f,(Xo)). In other words, define
integrated squared error (MISE), with weight function

—4/5

~ n

X, = arg min| (xo, /(X)) = (X, £,(x)) I
w(x) = —1_
T+ () and
o . ) x} = arg min| (x, £(x)) = (X0, fu(%0)) |2
Quite similarly, using (2) and (3), we obtain x
2 _ 2 The key to the proof of (3) is to show that the point (x,,, f,,(x,,))
E(VEy,(f— f)?) ~ E((Jn(x) = S(xX))%) dx. lies in the shaded regioh in Figure A.1.
1+ (f'(x))? Let s, = |f,(x0) — f(Xo)| denote the usual “vertical distance.”

. . Because f, converges to f, we will show that it is enough to approx-
Hence both E(VE,(f, > f)?) and E(VE,(f > /,)?) con-  imate the curve /,(x) by the line y = £(xo) + 7 4(x0) ( — Xo) for
verge to the same weighted version of MISE. Thus it is not  points near x,. The error in this approximation, over points in the
surprising that similar arguments show that SE3 converges large circle in Figure A.1, is quantified by
to twice this same weighted MISE. It is important to keep _ ~ ,
in mind, though, that these relationships are only asymptotic, Bn = x:|5—li§| <5 () = 7o) = o0} (x = 3ol (A1)
as VE,(f, ~> /). In many situations, such as those illustrated
in the figures used in this article, the behavior of VE,(f

— £,) is substantially different from MISE. But this does — 7 o) + p 06— x
show the relationship between VE,(f— f,) and the classical y =Jnlo) +f(xo)( 0)
asymptotic theory and demonstrates that much of the usual .

theory can be fairly simply adapted to the new error criteria Jn(xo /

introduced here.

Although the asymptotic expressions for

E(VEy(J, = /)?)

and Sn
212 SntAn

E(VEy(f~ /)% A oo
are the same, the proof of the proposition indicates that the '
“asymptotics should take effect sooner” for VE,( f, = f), \
because there is one less approximation step in the proof of fxo)

(4). This probably reflects different finite sample behavior
of both error criteria discussed above.

Interesting future work involves trying to find data-based
smoothing parameter selectors that attempt to optimize
VE,(f, = f). One approach would be to use “plug in” ideas
'(as in Sheather and Jones 1991), based on the foregoing X0
asymptotic representation. Another, which may track the
performance of VE,( f, = f) more closely in Asmall-sample
situations, is a bootstrap estimate of VE,(f, = f) in @ Figure A.1. Visual Representation of the Main Idea Behind the Proof of
straightforward extension of the usual ideas (see, for example, 3. The thin diagonal line is y = fofXo) + Fo(xo)(x — X,). The radius of the
Marron 1992). shaded sector is (s, + Ay)/V1 + (Fr(Xo))?
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The fact that the error A, is asymptotically much smaller than the
vertical distance, s,, is demonstrated in the following lemma.

Under assumptions A1-A6,
A, = Op(s 31)5

Lemma 1.

asn—> oo.
The proof of the lemma is provided at the end of the Appendix.
Note that

| x0 = Xal < 1fi(%0) = f(X0)| = 5,

from which it follows that (x,, f,(x,)) is inside the large circle in
Figure A.1. Hence by the approximation (A.1), (X,, f,(x,)) must
be between the heavy lines in Figure A.1. Now by a straightforward
trigonometric argument,

s, + A,

VI+ (Fox0))?’

and s0 (X, f,(x,)) must be inside the shaded region in Figure A.1.
It follows from this that

Sn— Ay
V1 + (F(x0))?
Thus from the standard fact (see, for example, Stone 1980) that
Fulx0) > f'(x0) as n—> oo,
it follows that with probability tending to 1 as n = oo,

dn(Xo) < (A.2)

S, A,
—_— (%)= ———, (A4
roGor " *ViToen “Y

with probability tending to 1 as # = co. Hence, using (2), we sce
that A, = 0,(s,) = 0,(n™%/*), which entails (3).

To prove (4), we use a quite similar argument. Interchanging
f. and f, we find that (A.2) and (A.3) can be replaced by

S AT <=2t (A
TrT)? S T oy '
where

Ax

sup

x| x—xp|<Sp
0(s?) = 0,(n7?7%),

as n — oo. This leads to (4). The weak indication that the con-
vergence in (3) is faster than that in (4) comes from the fact that
no approximation of the denominators is needed in (A.5) of the
type that was used to go from (A.2) and (A.3) to (A.4).

[f(x) = f(x0) — f' (%) (x — Xo)|

Proof of the Lemma
Using (2), note that

A,= sup s2

x:| x—xp| <sp

(.
3 ) 700+ 00— x ao

1 1
<=st sup |[fh(x)=/"(X)| +5s3 sup |f"(x)]
2 x:| x—=xg|=<Sp 2 x| x—x0|<Sp
1 .
=58 sup |50 = f"(x)] + O(s?),
x| x—xp| <8,
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as n = oo. The lemma follows from the fact that
pa=P{n7* sup  |fL(x) = f"(x)| =¢/C?} >0

x| x=xp|=Cn~—

for every ¢ > 0 and C > 0, which is easily shown by standard
methods.

[Received July 1993. Revised September 1994.]
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