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ABSTRACT 
Motivation: Systemic differences due to experimental features of microarray 
experiments are present in most large microarray data sets. Many different experimental 
features can cause these biases including different sources, different production lots of 
microarrays, or different microarray platforms. These systematic effects present a 
substantial hurdle to the analysis of microarray data. 
 
Results: We present here a new method for the identification and adjustment of systemic 
biases that are present within microarray data sets. Our approach is based on modern 
statistical discrimination methods and is shown to be very effective in removing 
systematic biases present in a previously published breast tumor cDNA microarray data 
set. The new method of “Distance Weighted Discrimination” is shown to be better than 
the Support Vector Machines (SVM) and Singular Value Decomposition (SVD) for the 
adjustment of systematic microarray effects and is shown to be of general use as a tool 
for the discrimination of systematic problems present in microarray data sets including 
the merging of two similar breast tumor data sets. 
 
Availability: ??? Could we make something available??  Yes, a (hopefully) pretty good 
Matlab version is now ready for Joel, and/or George to take for a test drive.  It might be 
good if this could happen before we actually submit. 
Contact: marron@email.unc.edu   Since we are both corresponding authors, shouldn’t 
your email be here, too? 
Supplementary Information: the complete figures that represent the cluster diagrams 
discussed in Figure 11 are available at http://www-unc-something Let’s decide soon if 
this goes on your site or mine.  My first guess is that yours is better….  Also we should 
put the software there, too. 
One more point:  Sometimes we say “systemic” and sometimes “systematic”.  Those 
don’t seem like exactly synonyms to me, and probably we should be using just one, but it 
is not clear to me which is best.  Maybe it is clear to you when each of these should be 
used?  If so, you might want to do an editor search to just check that these are right….     
 
 
INTRODUCTION 
DNA microarrays are a powerful tool for the study of complex systems and are being 
applied to many questions in the biological sciences. In particular, the study of human 
tumors using patterns of gene expression have identified many expression differences 
that can predict important clinical properties like the propensity to relapse (van’t Veer et 
al. 2002) or predict the survival outlook for a patient (Sørlie et al., 2001). These types of 
clinical sample studies are particularly challenging as the microarray experiments are 
often performed over many months because sample collection is prospective, with most 
samples being assayed soon after they are collected. These studies also have the 
additional challenge of assaying samples/tumors that are collected and processed at 
different institutions, and hence, systematic biases due to different handling procedure are 
typically present in these studies. 
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For many reasons, different types of systematic biases can be identified within 
microarray data sets. These biases are manifested as differences in gene expression 
patterns when one set of microarrays is directly compared to a second set of microarrays. 
When using “supervised” statistical analyses, these systematic biases show themselves as 
a subset of genes that tend to be more “highly expressed” in one set of microarrays versus 
another, and a concomitant subset of genes that are lower in expression in one set versus 
the other. These biases can typically be identified because they perfectly correlate with 
non-biological properties like where the samples were isolated and processed (source 
bias), or what print batch of microarrays the samples were tested on (batch effect). As can 
be expected, these systematic biases compromise the integrity of the data, and are 
especially troubling in experiments in which many samples are assayed over a long time 
period as these studies get assayed on many different print batches of microarrays.  
 
Others have used Singular Value Decompositions (SVD) to correct for systematic biases 
in a data set of yeast cell cycle experiments (Alter et al., 2000), and to correct for 
microarray batch bias in a data set containing many soft tissue tumors (Nielsen et al., 
2002). We present here a new method, called “Distance Weighted Discrimination 
(DWD)”, (Marron and Todd 2002), which can be used to adjust microarray data sets to 
compensate for systematic biases. We examined our previously published breast tumor 
data set (Perou et al., 2000 and Sørlie et al., 2001) containing 107 cDNA microarray 
experiments and identified two distinct experimental biases. To evaluate the robustness of 
this new analysis technique, we applied DWD to this data set and showed a significant 
reduction in the source bias, and in the microarray batch bias. We also present data which 
suggests that this approach can be used to make adjustments for other systemic biases 
including across platform effects, which suggests that DWD presents a new and powerful 
method for adjusting microarray data sets for systematic artifacts. 
 
 
SYSTEMS AND METHODS 
2.1 Hypothetical discrimination based adjustments 
One way of understanding the problems with SVD/PCA for removal of systematic effects 
is to recall that SVD/PCA seeks only to find “directions of greatest variation”. When this 
goal is consistent with the systematic biases effect (meaning the systematic bias effect 
generates more variation than any other parts of the data, as measured by the sums of 
squares), then good results will be obtained using SVD/PCA. This appears to have driven 
the positive results reported by Alter, Brown and Botstein (2000) and Neilsen et al 
(2002). However, when the magnitude of the systematic effect variation is similar to 
other components of variation, as is seen in Figure 5 (or perhaps even smaller as seen in 
Figure 7), then this approach can easily fail.  ??? Referencing Figures that appear later 
seems a little weird to me, but I get the idea that you prefer not to go into the detailed 
explanation of these at this point, which is OK for me…  In these situations, where the 
first SVD/PCA direction is not appropriate for bias adjustment, a natural way to improve 
the analysis is to make full use of the systematic bias information (i.e. each case is known 
to belong to a particular batch, or known to be derived from a given source). Then instead 
of choosing directions to maximize variation in the full population (the goal of 
SVD/PCA), it is natural to choose directions to maximize separation of the bias. These 
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points are illustrated, using a toy example of source effect, in Figure 1. This toy example 
is only two dimensional (i.e. only two genes are considered), to make it easy to visualize 
the data “point cloud”. Note that the two subpopulations (shown in red and blue) are quite 
separate from each other, and also have similar distributions (i.e. the same population 
shape), so that a simple translation would be able to remove any differences between the 
populations. The main goal of this paper is to find effective ways of finding the direction 
(and magnitude) of this translation. 
 
The direction vector of the first Principal Component (i.e. the SVD direction) for these 
data is overlaid as the long thick black line in Figure 1. Note that this direction is clearly 
wrong for our goal of removing the difference between these populations. In particular, 
when the data are projected onto this direction vector, the subpopulations will overlap. 
The reason is that the PC1 direction is the “direction of greatest variation in the data”, 
which in this case is quite different from effective source adjustment. Also overlaid is the 
Fisher Linear Discrimination (FLD) direction. Note that this direction is correct for 
removal of the source effect. In particular, when each source is shifted in this direction, 
by an amount determined by the source subpopulation means, then the distributions will 
be indistinguishable. The reason that FLD works much better is that it exploits the source 
labels, which are ignored by PCA/SVD. 
 
In addition to finding better directions for source effect adjustment, we recommend 
another important improvement over the SVD adjustment. Instead of completely 
subtracting all variation in the chosen direction (as is done with the usual SVD approach), 
we only subtract the subpopulation means of the data projected on the given direction. 
This preserves any variation in this direction that is not caused by source effects, instead 
of squashing out all structure in this direction as is done by subtracting the first PC 
direction (particularly dangerous in SVD contexts, since the first PC direction is chosen 
to contain “maximal interesting structure”). In Figure 1, this corresponds to shifting the 
subpopulations so that they overlap, instead of projecting the data onto a single line. 
 
While FLD is very effective for the toy data shown in Figure 1, it has less desirable 
properties for more realistic data contexts like microarrays, as shown in Figure 2. In 
particular, FLD has poor performance in High Dimension, Low Sample Size (HDLSS) 
contexts. This problem not only arises for microarray data, but also appears in other 
statistical contexts such as medical image analysis, and chemometrics. HDLSS data pose 
a very serious challenge to most classical statistical multivariate analysis settings (such as 
FLD), because the first step in those analyses (“sphering the data” by multiplying by the 
root inverse covariance matrix) fails, since the covariance matrix is not full rank. This 
point is illustrated in Figure 2A, which shows a different toy example, this time in 50 
dimensions. The data are all simulated Gaussian, with independent components and unit 
variance. All of the mean vectors are zero, except in the first component where there are 
20 data points (shown as plusses) with mean +2.2, and 20 data points (shown as circles) 
with mean -2.2. The projections of these 50 dimensional vectors onto the first component 
is shown in Figure 4A, as “jitterplots” (meaning random heights are used to provide 
visual separation of the points, Tukey and Tukey 1990), with smooth histograms (see 
Wand and Jones 1995) overlaid. While the subpopulations are clearly separated in this 
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plot, it can be quite challenging to find this direction because of the relatively high noise 
level and high dimensionality (a familiar situation in microarray analysis). 
 
Figure 2B shows the results of FLD for these data. The implementation is done with a 
generalized inverse of the full sample covariance matrix. The shape of the projected data 
sets look quite different from the projections in Figure 2B, with all of the data from each 
class lying essentially on top of each other. This is because FLD seeks to find the 
direction that maximizes the separation of the classes, relative to the spread within the 
classes. Because there are only 40 data points in 50 dimensions, it is not surprising that 
this type of “perfect separation” is possible. However, note that the subpopulation shapes 
are much different from those in Figure 2A, which represents the optimal direction for 
discrimination (i.e. the direction that will work the best for discriminating new data). The 
angle of the FLD direction (i.e. 58 degrees), to the optimal is also shown. This shows that 
FLD has found a spurious direction, and is driven by sampling artifacts that will change 
completely for a different set of data. Essentially FLD is “feeling random artifacts in this 
particular data too strongly”, and so this direction will suffer from poor generalizability 
as a discrimination rule. This problem can be viewed as over fitting of the data. 
 
Another approach to this problem is to use Support Vector Machines (SVM), discussed in 
detail in Section 2.3. The performance of the SVM, for the 50 dimensional toy data, is 
shown in Figure 2C. Note the projected data are no longer completely piled up, and that 
the angle to the optimal is substantially better, reduced to 36 degrees. However, there is 
still substantial data piling at the margin (the interior points where data from both classes 
tend to accumulate), which is quite reminiscent of the over-fitting problem of FLD 
illustrated in Figure 2B. Again there is a suggestion that FLD can also be “feeling too 
many sampling artifacts”. 
 
Marron and Todd (2002) have addressed this problem by the development of Distance 
Weighted Discrimination (DWD), discussed in Section 2.4, and illustrated in Figure 2D. 
Note that now the subpopulations appear more spread (as for the optimal projection in 
Figure 2A), and also the direction has a smaller angle to the optimal direction, now only 
26 degrees. Because of this strong performance in HDLSS situations, DWD is 
recommended for both this type of systematic artifact adjustment, and for other 
supervised learning (i.e. statistical discrimination) tasks for microarray data. An 
additional advantage of using DWD for systematic artifact adjustment is that the 
projected subpopulation shapes look more Gaussian, so that the subpopulation means, 
used in the adjustment, are more appealing as notions of “population center”. 
 
2.2 Microarray production, hybridizations and initial data processing. 
All microarrays and samples used in this study have been previously published; the 
experiments used in Figures 3-8 were taken from the Stanford Microarray Database 
(SMD) and are described in Perou et al. 2000 and Sørlie  et al. 2001. The remaining 
examples illustrate the effectiveness of DWD cross platform adjustment, where the goal 
is to combine this Stanford data set with data from van’t Veer et al. 2002, which are 
available at the Rosetta Inpharmatics website. 
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We first performed a number of gene filtering steps before any analyses were done. First, 
for all data obtained from the SMD, we filtered all genes for a signal intensity of 50 or 
greater in both the red and green channels and insisted that this signal intensity criteria be 
present on 70% or more of the 107 experiments for each gene. Next, we took the log2 
transformed normalized R/G ratio for each gene on the microarray. The missing values in 
this data table were imputed using the KNN-impute feature contained within the 
Significance Analysis of Microarrays excel plug-in program (Tusher et al., 2001 and 
Troyanskaya et al. 2001). This imputed data set was then used for all analyses. 
 
2.3 Algorithms – Support Vector Machines (SVM) 
The SVM is a powerful discrimination method initially proposed by Vapnik (1982, 
1995). Also see Burges (1998) for an easily accessible introduction, Cristianini and 
Shawe-Taylor (2000) for a detailed introduction, and http://www.kernel-machines.org/. 
The essential idea is to find a hyperplane that separates the two classes (i.e. each 
systematic bias) as well as possible. When the data are “separable” (meaning prefect 
separation is possible), then the hyperplane is chosen to maximize the minimum distance 
of all of the data to the hyperplane. The minimizing distance is called the “margin”. An 
interesting view comes from studying the normal vector of the separating hyperplane, and 
the projection of the data upon that. This is the view shown in Figure 2C. The interior 
points where the data pileup shows the margin. The SVM can be viewed as optimizing 
the direction vector to maximize the size of this margin. When the data are not separable, 
penalty terms (for those data points on the wrong side of the boundary) are added to the 
optimization problem, but it is still accessible to standard quadratic programming 
methods. The non-separable case is usually not particularly important in HDLSS 
situations such as microarray analysis. This projection of the data onto the SVM normal 
vector, for the data of Figure 5, is shown in Figure 3. The effect is perhaps surprisingly 
similar to Figure 2C. Again note that the use of the means of the projections shown in 
Figure 3, for adjustment in this direction, is not very attractive, because both distributions 
look quite skewed (in opposite directions). When means are subtracted, to adjust for the 
systematic effect, the population shape will be rather strange in this direction. 
 
Note that the SVM direction represents an improvement over anything based on SVD, 
with the two sources far more separated than can be seen in any PC direction in Figure 5 
(especially in the PC1 direction where there is considerable overlap. Thus a major 
improvement of SVM over SVD for source adjustments, is demonstrated for this data set. 
This comes from the fact that SVM is essentially aggregating over all useful directions. 
In Section 2.4, a further improvement, based on Distance Weighted Discrimination, is 
proposed. This method finds a direction with a similar large spread between the batches, 
and gives subpopulations with a more attractive Gaussian-type shape, as suggested in 
Figure 2D. 
 
2.4 Algorithms - Distance Weighted Discrimination (DWD) 
Distance Weighted Discrimination was initially proposed by Marron and Todd (2002). 
The goal is to improve the performance of the SVM in HDLSS contexts, as illustrated in 
Figure 2C. The main idea is to improve upon the criterion used for “separation of classes” 
in the SVM. The SVM has data piling problems along the margin, because it is 
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maximizing the minimum distance to the separating plane, and there are many data points 
that achieve the minimum. A natural improvement is to replace the minimum distance by 
a criterion that allows all of the data to have an influence on the result. DWD does this by 
maximizing the sum of the inverse distances. This results in directions that are less 
adversely affected by spurious sampling artifacts, as shown in Figure 2D. 
 
Figure 4A shows the projection of the data onto the DWD direction for the same data as 
used in Figures 5 and 3. As one would expect from Figures 2D and 3, the sources are still 
well separated. A careful look at the horizontal scales shows that the “average population 
separation” is even larger in Figure 4A than it is in Figure 3. Furthermore these 
subpopulations now look much more symmetric (even more Gaussian), so the subtraction 
of respective subpopulation means in this direction will remove the source effect in an 
appealing manner. 
 
The specifics of the batch adjustment (thinking of the data as vectors with entries 
corresponding to genes) are:   

i. The DWD direction vector is found 
ii. The subpopulations (e.g. respective source subsets) are all projected in that 

DWD direction. 
iii. The subpopulation projected means are computed 
iv. Each subpopulation is shifted in the DWD direction, by an appropriate 

amount, through the subtraction of the DWD direction vector multiplied 
by each projected mean. 

 
Figure 4B checks the performance of DWD as a systematic bias effect removal tool, by 
applying the same DWD based method to the source adjusted data. Note that this time 
DWD does not even find a direction where the data are separated. Another verification of 
the good performance of DWD is the elimination of the source effect shown in Figure 6, 
where the different sources appear to be randomly intermingled. The relative behavior of 
SVM and DWD shown here is very typical of a number of other examples that we have 
studied. Some of these are shown in Section 3 and include adjustments for microarray 
print batch effects, and even for microarray experiments based on different platforms. 
 
3.1 Implementation of DWD to adjust for sample source bias 
We identified in our previous microarray data set, a set of genes whose expression nearly 
perfectly correlated with where the samples came from (i.e. Stanford University or 
Norway); we do not believe that this set of genes is due to true biological differences, but 
that it is instead, due to the systematic differences in how the sample RNAs were 
prepared. Useful views of this data can be based upon Singular Value Decompositions 
(SVD), which is equivalent to Principal Component Analysis (PCA). Straightforward 
understanding of this analysis comes from thinking about the vectors of gene expressions, 
for each case, as points in a high dimensional point cloud. SVD and PCA can be viewed 
as finding “interesting directions” for understanding the structure of the point cloud. 
More precisely, they find “directions of greatest variability”. A view that makes the 
source effect problem more clear is shown in Figure 5. This figure shows a matrix of 
plots of one and two dimensional PCA projections. The plots on the diagonal show the 1-
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d projections (commonly called “principal component scores”) of the data onto each of 
the first four eigenvectors (i.e. the directions of interest in the point cloud). The 
individual microarray experiments are shown as colored dots, where the colors indicate 
the two different sources of breast tumors used in our previous studies (i.e. Norway or 
Stanford). The horizontal axis shows the PC scores (an axis with the numerical values is 
not shown, because these numbers are not particularly interpretable), and the vertical axis 
shows a random height used for visual separation (the same “jitter plot” visualization 
used in Figures 3 and 4). The black curves in the 1-d diagonal projection plots are 
smoothed histograms (again as in Figures 3 and 4). The off diagonal graphics all show 
the 2-d projections onto different pairs of eigenvectors (directions in the point cloud 
space) as scatterplots, with the x-axis corresponding to the component whose 1-d 
projection is directly above or below, and with the y-axis corresponding to the component 
whose 1-d projection is directly to the right or left. Thus Figure 5E is a “flip about the 45 
degree line” of Figure 5B, and both of these show how the first PC direction relates to the 
second. 
 
Note that in Figure 5A, the red and blue points are somewhat separated. The approach 
suggested by Alter et al. (2000) and Nielsen et al., (2002) is to remove this source effect 
by subtracting this PC direction from the data. However, for this data set, there is 
substantial overlap of source effects in the PC1 direction, suggesting that deeper 
investigation would be useful. A stronger suggestion that this is the case comes from 
Figure 5B, which compares the first and second eigen directions (i.e. PC1 and PC2). Note 
that better separation between the red and blue subpopulations is possible when using a 
diagonal separating line, than using a horizontal line that would be entailed from using 
only the PC1 direction. This casts doubt on the approach of simply removing the first 
principal component from the data; in particular, removal of some linear combination of 
the first and second directions (i.e. a slanted line in the plot) should provide a better 
source adjustment. This opens the question of finding other directions, which may be 
more appropriate for source adjustment. 
 
A main goal of this paper is to present some improved approaches to finding directions 
which better separate the data than the single first PC. The result of our “source effect” 
removal using DWD, is shown in Figure 6. Now the colors, representing the two sources, 
are very well mixed, meaning that the systematic sample source effects in the data have 
been very effectively removed. The same is true for higher order PC components (we 
have looked at orders up to 8, but these are not shown to save space). Our result is better 
than that where just the first eigen vector is removed, as recommended by Alter, Brown 
and Botstein (2000) and Neilsen et al (2002), which is summarized in Figures 5 F, G, H, 
J, K, L, N, O and P, i.e. the plots below the top row and to the right of the first column in 
Figure 5.  For example, Figure 5 H shows a strong systematic effect still present in the 
data. The good results in Figure 6 can be viewed as appropriately summarizing all of the 
directions in Figure 5, that show a need for adjustment, as well as many other directions 
not shown here. This summarization effect is why the visual separation apparent in 
Figure 4 is much more than any seen in Figure 5. 
 
3.2 Implementation of DWD to adjust for other systemic biases 
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In this section, additional examples are considered, which show that the superiority of 
DWD for source adjustment over SVD approaches is not a fluke of the particular data set 
under consideration. The first of these is another systematic microarray bias, known as 
the “batch effect”. Most spotted DNA microarrays, particularly those produced at 
academic facilities, are physically produced in groups of 100-200 due to the number of 
locations that are available on the microarray robot printing platter (see the “M guide” at 
http://cmgm.stanford.edu/pbrown/mguide/index.html for robot details). A given “print 
run” or “batch” of microarrays tends to show a “batch bias”, which is manifested as a set 
of genes whose high or low expression perfectly correlates with what batch the sample 
was assayed on. This effect can be relatively small on some batches and very significant 
on others, however, it has been our experience that nearly every batch of microarrays 
shows some systematic batch bias. 
 
Figure 7 shows essentially the same PCA scatter plots as in Figure 5, using the same set 
of 107 breast tissue experiments, except this time the data points are colored according to 
microarray “batch” (three batches or different print runs of microarrays were used). As in 
Figure 5, it is clear that there is a systemic effect of batch on the structure of the data. 
However, note that this time, the effect appears most markedly in the 4th eigen direction, 
Figure 7P. It is clear that in this case the classical SVD batch adjustment (based on only 
the first eigen direction) would be ineffective at removing this batch bias. 
 
All of the methods discussed above apply to two class discrimination, but this data set 
came from three different batches, i.e. three different classes. To address this additional 
level of complexity, which is common in many microarray data sets (for example 
samples coming from three different sources), we took a step-wise approach. An 
inspection of Figure 7 shows that in the PC4 direction, the very small Batch 1 (red) 
appears more consistent with Batch 2 (green). Hence, we first made a batch adjustment 
between Batches 1 and 2 (combined) and Batch 3 (blue). Next we apply the same method 
to the adjusted data, to separate Batch 1 from Batch 2. Because these data also have a 
source effect, as illustrated in Figure 1, a third step, removing that source effect as well, is 
also sensible. The result of the three step process, shown in Figure 8, reveals 
subpopulations that are now well intermingled (i.e. the batch effect has been successfully 
removed). Analogs of Figures 3 and 4, for these adjustments, show quite similar lessons: 
the DWD gives excellent separation and good subpopulation shapes, whereas the SVM 
separated similarly well, but with the same resulting less appealing skewed projected 
subpopulation shapes. Because the lessons are so similar, these plots were not included.  
 
One of the most pressing challenges in the microarray field is how to combine two data 
sets that came from two different groups, and which utilize different microarray 
platforms. In this scenario, many different systematic biases will be present including 
microarray batch effects (which in this case will be even greater due to different 
microarray platforms), source effects as each group will utilize a different source of 
experimental samples, different RNA extraction protocols, and other potentially unknown 
sources of systematic effects. As briefly discussed above, there are a number of studies 
that have used DNA microarrays and a two-color experimental design, to study the gene 
expression patterns coming from grossly dissected human breast tumors (Perou et al 
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2000/Sørlie  et al. 2001 and van’t Veer et al 2002); the combined data set of Perou and 
Sørlie was utilized in the earlier figures and consisted of 107 samples representing 78 
grossly dissected breast tumors that were assayed using mRNA with direct labeling on 
cDNA microarrays produced at Stanford University (and which were assayed versus a 
cell line pool common reference sample). The van’t Veer et al 2002 data set contained 
117 grossly dissected breast tumor samples that were labeled using the linear 
amplification of total RNA, and which were assayed on Agilent long oligo DNA 
microarrays (and which were assayed versus a common reference that was a pool of 50 
tumors). 
 
Figure 9 shows the PCA representation of the raw data.  Again these two data sets are so 
different that simple SVD adjustment appears to offer a reasonable adjustment. However, 
note that both the second and third eigen directions appear to suggest some improvement 
(again slanted lines give better separation than horizontal ones in Figures 9B and 9C), so 
improvement is expected from the DWD method. We next adjusted the data using DWD 
and one view of the adjusted data is shown in Figure 10. Note that the red and blue 
populations now have very good overlap, indicating a successful adjustment.  Figure 10 
also shows why earlier attempts at this adjustment, based on simple mean based methods, 
were not successful: there is a substantial outlier (visible in both the PC2 and PC3 
projections).  A strength of DWD, over mean based methods for bias adjustment, is its 
reduced sensitivity to such outliers. 
 
One goal of our breast tumor studies was to identify the natural diversity of tumor 
subtypes present, and to accomplish this goal we identified a set of genes that we termed 
the “intrinsic” gene set (Perou et al. 2000), which when used to group breast tumors using 
hierarchical clustering analysis as implemented by Eisen et al. (1998), identified subsets 
of tumors/patients that predicted overall patient survival (Sørlie et al. 2001). The data 
displays presented in Figures 9 and 10 are suggestive of good integration, however, we 
wished to perform a combined hierarchical clustering analysis of the Stanford and van’t 
Veer et al data sets because these two data sets represent similar microarray analyses, 
namely two-color microarray experiments done on grossly dissected human breast 
tumors.  
 
In the combined data set cluster analysis, the common set of intrinsic genes across both 
data sets was determined (311/478 genes) ??? is it 311 or 478? ??? ; next each data set 
was separately imputed using the KNN-impute program of Troyanskaya et al. 2001, and 
then each gene was median centered within each data set. We next combined the data sets 
and performed a two-way average linkage hierarchical cluster analysis using the program 
“Cluster” and have displayed the data using “TreeView” (M. Eisen and colleagues 
(http://rana.lbl.gov/EisenSoftware.htm)). The “adjusted” and combined data set differed 
in that after each data set was imputed, we used DWD to adjust the Stanford to the van’t 
Veer data set as shown in Figure 10, then we took the adjusted data and median centered 
each gene across all of the data and clustered. 
 
As can be seen in Figure 11A, before adjustment, there was very little intermixing of the 
Stanford (Blue line) and van’t Veer (Red line) samples as judged by examination of the 
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hierarchical cluster sample associated dendrogram (the full cluster diagrams, with 
complete gene names are available as supplementary materials Figure 12 and 13); even 
when there was mixing, these samples showed low correlations with the other samples in 
their dendrogram branches as evidenced by the length of the branches. After DWD 
adjustment, however, there was a great deal more intermixing of the Stanford and van’t 
Veer samples (Figure 11B); in particular, the left most dendrogram branch in the 
unadjusted data (Figure 11A) contains many of the ER-positive tumors and was broken 
into two sub-branches, each of which was almost entirely composed of samples from one 
source. The corresponding ER-positive branch in the adjusted data (Figure 11B) was also 
on the left and shows a much greater degree of source intermixing, and the gene 
expression data itself showed more continuity across the luminal-ER positive expression 
cluster. 
 
CONCLUSION 
We have proposed a new method, based on Distance Weighted Discrimination, for 
adjustment of various differences between microarray experiment subpopulations. It is 
seen from several viewpoints that in many cases the new method can provide large 
improvement over previously proposed methods based on subtracting the first eigen 
direction from the data using SVD analysis. The new method worked well making 
adjustments for a number of distinct types of systematic effects including source and 
batch effects. An even more powerful application, however, was the use of DWD to 
remove or lessen, the many systematic biases that are present across similar data sets that 
were generated in different laboratories using different microarray platforms.  The 
message observed from the PCA projection visualization, that DWD successfully 
removed this platform effect, is confirmed using clustering dendograms.  We recommend 
DWD as a general approach for removing systematic bias effects from microarray data. 
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Figure 1: Toy example showing how PCA directions can be wrong for batch adjustment, 
motivating methods based on discrimination ideas. 
 
Figure 2: 50 dimensional Gaussian toy example, to illustrate HDLSS failing of FLD, and 
superior performance of DWD over SVM. 
 
Figure 3: Projection of data from Figure 5, onto the normal vector of the SVM separating 
plane.  Shows good separation of subpopulations, but data are piled up at margin. 
 
Figure 4: Application of DWD to same data as in Figures 3, 5 and 6. Shows both good 
separation, and also reasonable subpopulation shape for mean shift adjustment. 
 
Figure 5: PCA projection scatterplot matrix, showing 1-d (diagonal) and 2-d projections 
of data onto Principal Component directions, of raw Stanford data. Groupings of colors 
indicate serious source effect problems. 
 
Figure 6: Scatterplot matrix of PCA projections, after DWD adjustment, of Stanford data. 
Random dispersion of colors (instead of clustering as in Figure 5) shows that source 
adjustment was effective. 
 
Figure 7: PCA projection scatterplot matrix of raw Stanford data, using batch colorings. 
Groupings of colors this time indicate serious batch effect problems, in a way that leaves 
conventional PC1 adjustment completely ineffective. 
 
Figure 8: Scatterplot matrix of PCA projections, after DWD adjustment, of Stanford data. 
Random dispersion of colors again indicates adjustment was effective. 
 
Figure 9: PCA projection scatterplot matrix of raw combined Stanford - van’t Veer et al 
data. Strong grouping by colors highlight the major differences between these platforms. 
 
Figure 10: Scatterplot matrix of PCA projections, for the adjusted Stanford - van’t Veer 
data. Overlap of the color groups shows an effective adjustment.   
 
Figure 11: Clustering dendogram analyses, with the the van’t Veer et al cases shown in 
red, and the Stanford cases blue.  Figure 11A shows that simple median recentering, 
provides inadequate mixing across platforms, resulting in red-green patterns driven by 
batch effect.  However, the DWD platform adjustment, resulting in Figure 11B, does 
gives excellent mixing of the platforms, resulting in red green patterns of biological 
significance. 
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