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Abstract

First derivative based tools have been very popular for detecting fea-
tures in nonparametric curve estimators. However, in many applications
second derivative information is quite important for identifying statis-
tically significant features. This paper illustrates several different ways
in which second derivative based inference significantly improves upon
methods based on first derivatives. The scale space viewpoint provides
the foundation for effective use of second derivative information in our
inference.

1 Introduction: why study the second deriva-
tive?

A traditional limitation of the nonparametric curve estimation tools, when ap-
plied to real data, is the challenge of assessing the statistical significance of
observed features in the smoothed data. For example, when a bump appears
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in a curve estimate (in the course of an exploratory data analysis), this could
be a discovery of scientific importance, or it could be simply due to sampling
variation.
The SiZer method, developed by Chaudhuri and Marron (1999), has over-

come this limitation, by an effective combination of statistical inference in scale
space and visualization. See Lindeberg (1994) and ter Haar Romeny (2001) for
introduction to scale space ideas. Other approaches to this problem are bump
hunting and mode testing, see Good and Gaskins (1980) Silverman (1981), Har-
tigan and Hartigan (1985), Izenman, A. J. and Sommer, C. (1988), Müller and
Sawitzki (1991), Hartigan and Mohanty (1992), Minnotte and Scott (1993),
Fisher, Mammen and Marron (1994), Donoho (1998), Cheng and Hall (1997),
Minnotte, M. C. (1997) and Fisher and Marron (2001). A less attractive ap-
proach to inference for curve estimation is classical confidence bands, see Section
6.2 of Chaudhuri and Marron (1999) for discussion. An important advantage
of SiZer over these other approaches is that not only is the number of bumps
investigated, but also their location, as well as other types of features. Another
difference is that the inference of SiZer focuses on the underlying curve, at a
given scale of resolution (i.e. for a given level of the smoothing parameter).
Many of the above methods are based on the first derivative of the curve

estimate, and none explicitly uses the second derivative. But some features
are better detected using information about the second derivative. The main
contribution of this paper, is the study of the importance of second derivative
information for exploratory data analysis (both density estimation and regres-
sion problems). We observe that this information is especially powerful when
used in conjunction with first derivative information.
A first example showing the usefulness of second derivative information is

shown in Figure 1, where the data are half marathon times from a full marathon
foot race in Raleigh, North Carolina in December 2000. It was suspected that
early in this race, a leading group of runners was mistakenly sent on a shorter
route. When the mistake was discovered, the remaining runners were sent
on a longer route, thus opening up a large gap between them and the first
group. The first official times of the runners were measured half way through
the race, by which time some mixing of the groups had taken place, leading to
a mixture of these two distributions in the data. The top panel of Figure 1
shows the n = 1056 half marathon times (in minutes), as green dots (with a
random vertical “jitter”, see pages 121-122 of Cleveland), together with a family
of kernel density estimates (defined in Section 3.1), indexed by the smoothing
parameter, shown as blue curves. See e.g. Silverman (1986), Scott (1992) and
Wand and Jones (1995) for additional discussion of kernel density estimation.
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Figure 1: Half Marathon times, for the Raleigh Marathon. The black
density estimate curve in the top panel suggests a mixture of two distributions.
The first derivative analysis in the second panel does not confirm bimodality.
The second derivative analysis in the bottom panel indicates that the shoulder

on the left is statistically significant.
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The thick black curve is the Sheather-Jones Plug In bandwidth (see Jones,
Marron and Sheather (1996a,b) for a discussion of data driven bandwidth se-
lection), and the bimodal structure suggests that the data may have come from
a mixture of two subpopulations. However, the other bandwidths cast some
doubt on the strength of the evidence in favor of bimodality. In particular,
by oversmoothing with a larger bandwidth, the two modes converge into a sin-
gle unimodal distribution. By undersmoothing with a smaller bandwidth, the
small mode on the left and the valley just to the right of it can be sharpened,
but many spurious modes (some of even larger magnitudes) also appear. This
is an example of a problem routinely encountered in exploratory data analysis.
There is some suggestion of an important feature, but the question of statistical
significance of the feature is critical and it is not easy to resolve.
The middle panel of Figure 1 shows a first derivative based analysis of the

Raleigh Marathon data. This map is a visual representation of statistical
significance of the slopes of the family of kernel density estimates with varying
choices of the bandwidth (i.e. over the scale space). The horizontal axis is the
same as in the top panel, and the vertical axis shows the bandwidth (i.e. level of
resolution of the data) in a logarithmic scale. The funnel shaped dotted white
curves indicate the amount of smoothing being done at each level of resolution,
i.e. the width of the Gaussian kernel window as ±2 standard deviations. Blue
regions show significant increase of the curves (at the level α = 0.05), red
shows significant decrease, and the intermediate color of purple shows lack of
significance (i.e. there is no strong evidence for the slope being either positive
or negative). One more color shown in this SiZer map is gray, used in regions
where the data are too sparse for drawing inference. The first derivative map
is blue on the left, and red on the right, thus not supporting the existence of
two modes in the data (which would follow from an additional red patch near
the shoulder). In other words, for the present sample size, the small mode on
the left does not appear to be statistically significant at any level of resolution,
using first derivative based inference.
The reason that our first derivative based method fails in this example is that

the decrease to the left of the first mode is very small. In fact this feature is
more like a “shoulder” than a mode. Instead of being well highlighted by slope,
this shoulder is better quantified in terms of curvature, and an inflection point.
The color map shown in the bottom panel does second derivative inference, using
the color cyan (light blue) to indicate statistically significant concavity (curving
downwards, i.e. negative second derivative), and orange to flag statistically
significant convexity (curving upwards, i.e. positive second derivative), and
green where the curve is very flat or linear with insignificant curvature (i.e. “zero
second derivative”). Regions of data sparsity are again indicated using the color
gray. Mathematical details of this new second derivative based inference are
developed in Section 3.
The map summarizing the second derivative inference, in the bottom panel

of Figure 1, shows a statistically significant region of convexity at times around
103 minutes, indicating that the “shoulder” to the left of the central mode is
statistically significant. Thus we conclude that the data are indeed a mixture of

4



two populations, and thus that a group of runners received an unfair advantage.
In addition to finding features not easily visible using first derivative tools,

second derivative analysis is also of fundamental interest in change point prob-
lems. Change points can be studied in terms of the first derivative of the
smooth, see e.g. Carlstein, Müller and Siegmund (1994). Figure 2 studies a
change point example. This time the data are generated as a step function
with four steps of integer heights, and additive Gaussian noise with standard
deviation = 0.5. The top panel shows the n = 1024 data points as green dots.
The blue curves are a family of local linear smooths of the data (defined in
Section 3.2), for different choices of the bandwidth. See e. g. Wand and Jones
(1995) and Fan and Gijbels (1996) for additional discussion of local polynomial
regression. Each jump (either up or down) corresponds to a change point in
the underlying signal.
The second panel in Figure 2 shows how a first derivative analysis can be

used to find change points, using the distinctive funnel shape of the red and
blue regions for small scales. This shape has been mathematically explained
by Kim and Marron (2001), who used this to develop a separate visualization
tool for finding jumps.
Change points are even more strongly indicated by using second derivative

information because a change point is a local maximum of the first derivative,
thus a local zero crossing of the second derivative. Because of this zero crossing
property of the second derivative at jumps, the curvature based analysis in the
bottom panel clearly indicates change points with abrupt changes in color. The
information conveyed in the second panel is less effective at highlighting change
points because it only shows statistical significance of the first derivative, but
does not clearly flag local maxima of the first derivative.
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Figure 2: Simulated step function example, about change points. Middle
panel shows first derivative analysis. Bottom panel shows that significant zero

crossings of the second derivative can better highlight jumps.6



Additional illustrations of the usefulness of second derivative information are
given in Section 2. The details of the statistical inference that underlies SiZer
are given in Chaudhuri and Marron (1999). Mathematical and computational
details, for statistical inference using second derivative information, are outlined
in Section 3.

2 More examples with simulated and real data
In this section additional examples are analyzed, which again show that second
derivative information can be very important to statistical inference for features
in smooth curves.
Figure 3 shows a simulated example in the context of nonparametric regres-

sion. Simulated data points (Xi, Yi) for i = 1, ..., 200, were generated as a tilted
sine wave signal with additive noise. Specifically, the Xi’s are equally spaced
on [0, 1], and Yi = sin (8πXi) + 2 + 20Xi + εi, where the ε1, ..., εn are i. i. d.
N
¡
0, 22

¢
. The data points are shown as green dots in the top panel of Figure

3. Because of the tilt in the sin wave, there are regions of strong increase, that
alternate with regions of flatness. The blue curves are local linear scatterplot
smooths.
The first derivative analysis is shown in the middle panel of Figure 3. The

only colors present are blue and purple, indicating regions of increase and of
uncertainty. Thus this analysis provides no conclusive evidence for any inter-
esting features, such as the wiggles of the sine wave, though they are present in
the underlying signal. The reason is that the general upward trend provides a
“masking effect” that downplays the waves around the line.
This example is deliberately constructed to show that second derivative

analysis can be very useful in situations where interesting features are masked by
other strong behavior of the first derivative In particular, the second derivative
analysis, shown in the bottom panel, flags all of the arches of the sine wave as
statistically significant structures, using the colors cyan (orange) for significant
downward (upward) curvature.
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Figure 3: Toy data set showing an example where first derivative
information misses important structure that is clearly flagged as statistically

significant through the use of second derivative information.
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Figure 4: Analysis of Flow Cytometry data. This shows two shoulders in
the curve, that are found by the second derivative analysis, but are not

statistically significant in the first derivative analysis.9



Figure 4 shows another real data example demonstrating the importance
of using second derivative information. These data are from the field of flow
cytometry, where the presence and percentage of florescence marked antibodies
on cells are measured. The medical goal is the determination of quantities
such as the percentage of lymphocytes among cells. The data come from the
laboratory of Drs. S. Mentzer and J. Rawn, Brigham and Women’s Hospital,
Boston, Massachusetts, and we are grateful to M. P. Wand for putting us in
contact with them. In a single experiment, many cells are run through a laser,
and the intensity of florescence of each cell is measured, and the data are stored
as 256 bin counts, where bins are called “channels”. These bin counts are
traditionally viewed on the square root scale. The green dots in the top panel
are square root bin counts for one such experiment, based on 5000 total cells.
For some flow cytometry data sets, the cells are of the same type, and the

marked antibodies have a nearly uniform distribution on the cell, resulting in an
approximately Gaussian population in the presence of measurement error. In
other data sets, there are two different subpopulations of cells, with markedly
differing degrees of attraction for the marked antibodies, resulting in a clear
bimodal population. There are also “in between cases”, where there is a sug-
gestion of bimodality, but it is not clear cut, an example is shown in Figure 4.
Examples of all of these three cases are not shown in this paper, to save space,
but can be viewed on the web page

http://www.stat.unc.edu/faculty/marron/DataAnalyses/

SiZer/SiZer_Examples.html#Eg2:FlowCytometry

The first derivative analysis in the middle panel of Figure 4 shows blue
on the left and red on the right at a wide range of different scales, indicating
a significant increase then decrease, i.e. unimodality. However, the second
derivative analysis shown in the bottom panel, indicates much more structure.
In particular, the small orange region near Channel 75, and the small cyan
region near Channel 150, flag the two shoulders in the curve that are visible in
the top panel as being statistically significant. These shoulders suggest that
there are three mixture components in this distribution. Again first derivative
inference failed to find these components, because of the“ masking effect” of the
overall strong increase and decrease of the curve in those regions.
The data set shown in Figure 4 was chosen from a set of 42 similar analyses.

This data set is special because there are actually two different features that
are found by the second derivative analysis, but not from the first derivative.
However, features of this type were rather frequent, in fact occurring in13 of the
42 data sets considered.
Next is an example which demonstrates that statistical significance of a fea-

ture can be observed simultaneously using first and second derivatives, however
the significance may show up at different levels of smoothing for the two deriva-
tives. Figure 5 shows the 1975 British Family Incomes data, that were analyzed
in Figures 1 and 2 of Chaudhuri and Marron (1999). Again the green dots show
the raw data, with a random vertical jitter for good separation. The blue family
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of kernel density estimates reveals both expected features of income distribu-
tions, such as a long right tail, and a large number of lower to middle income
families on the left, and some unexpected features, such as two modes. At one
point an important question was whether these modes were significant struc-
tures, and an affirmative answer was provided by Schmitz and Marron (1992),
and corroborated using a scale space analysis by Chaudhuri and Marron (1999).
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Figure 5: Analysis of the British Incomes Data. Shows that significant
structure appears at different scales for first and second derivative based

inference.

Here the first and the second derivative analyses are done side by side to
illustrate several important differences. The first and second derivative color
maps shown in the bottom panels both indicate the significance of the bimodal
structure. In particular, at the scale indicated by the black horizontal bar in the
bottom left map (this same scale is highlighted in the family of smooths directly
above), the first derivative color changes, of blue-red-blue-red, flag both modes
as statistically significant. Similarly at the scale indicated by the horizontal
black bar in the lower right map, the significance of the two modes is flagged
by the orange-cyan-orange-cyan-orange color changes. A very important point
is that the statistical significance of the modes shows up at two quite different
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scales in the two maps. This highlights a key difference between inferences that
can be drawn using first and second derivative information in the presence of
noise. In particular, the second derivative estimate is more strongly affected by
sample variations at small scales than the first derivative estimate. This appears
clearly in the bottom panels, because the red-blue regions appear at smaller
scales in the map on the left highlighting significance of the first derivative,
than the cyan - orange regions in the map on the right highlighting significance
of the second derivative. There are some well known mathematics behind this
phenomenon, discussed in Section 3.3 below.

3 Mathematical Details
Let bfh(x) denote a nonparametric curve estimate. Our approach to statisti-
cal inference is based on confidence limits for the first and second derivatives.
Behavior at x and h locations is presented via color maps where different col-
ors indicate regions where the derivatives are significantly positive, significantly
negative or insignificant. This inference is based on confidence limits of the
form bf 0h(x)± q · bsd³ bf 0h(x)´
or bf 00h (x)± q · bsd³ bf 00h (x)´ ,
depending on the derivative of interest, where q is an appropriate quantile (see
Section 3 of Chaudhuri and Marron 1999), and the standard deviation is esti-
mated as discussed below. The derivative is significantly positive (negative)
when both confidence limits are above (below) 0, and insignificant when the
confidence limits bracket 0.
It can be shown that when the first derivative E bf 0h(x) and the second deriv-

ative E bf 00h (x) curves, viewed at a specific level of smoothing h have a finite
number of zero crossings over a compact interval, all those zero crossings will
be detected with probability tending to one as the sample size grows by the our
procedures for assessing statistical significance based on confidence limits, and
they will be marked by color changes in the respective color maps summarizing
the first and second derivative inferences. For this and other related asymptotic
consistency results and their implications see Chaudhuri and Marron (2000).
Because repeated calculation of smoothers is required for these color maps,

fast computational methods are very important. Binned (also called “WARPed”)
methods are natural for this, because the data need only be binned once. See
Fan and Marron (1994) for detailed discussion of this, and other fast computa-
tion methods.
Further details are substantially different for density estimation, as illus-

trated in Figures 1 and 5, and regression, as illustrated in Figures 2, 3 and 4.
Density estimation is treated in Section 3.1 and regression in Section 13.

12



3.1 Density Estimation

Given a set of dataX1, ...,Xn from a smooth probability density f(x), the kernel
estimate of f is bfh(x) = 1

n

nX
i=1

Kh (x−Xi) , (1)

where h is the “bandwidth” and Kh is the “h-rescaling” of the kernel function
K, Kh(·) = 1

hK
¡ ·
h

¢
. The main idea is to “put probability mass ≈ 1

n near each
Xi”. See for example Silverman (1986), Scott (1992) and Wand and Jones
(1995). Density derivative estimates are obtained by differentiating bfh(x),

bf 0h(x) =
1

n

nX
i=1

K0
h (x−Xi) ,

bf 00h (x) =
1

n

nX
i=1

K00
h (x−Xi) ,

where K0
h(·) = 1

h2K
0 ¡ ·
h

¢
, K00

h(·) = 1
h3K

00 ¡ ·
h

¢
. Using the same scale space view-

point as in Chaudhuri and Marron (1999, 2000), bf 0h(x) and bf 00h (x) are considered
to be estimates of E bf 0h(x) and E bf 00h (x), respectively, which represent the deriv-
atives of f at the level of resolution h. Since both of these estimates are simple
averages of i. i. d. random variables, their variances are simply estimated as
the corresponding sample standard deviations,

dvar ³ bf 0h(x)´ =dvar ¡n−1Pn
i=1K

0
h(x−Xi)

¢
= n−1s2 (K0

h(x−X1), ...,K0
h(x−Xn)) ,

dvar ³ bf 00h (x)´ =dvar ¡n−1Pn
i=1K

00
h(x−Xi)

¢
= n−1s2 (K00

h(x−X1), ...,K00
h(x−Xn)) ,

where s2 is the usual sample variance of n numbers.

3.2 Regression

Given a sample of paired data (X1, Y1), ..., (Xn, Yn), the local linear and lo-
cal quadratic regression estimates of the conditional expected value, i.e. the
regression function,

f(x) = E (Yi|Xi = x) ,
are obtained as the solutions a of the locally weighted least squares problems

min
a,b

nX
i=1

[Yi − (a+ b(Xi − x))]2Kh (x−Xi) , (2)

min
a,b,c

nX
i=1

h
Yi −

³
a+ b(Xi − x) + c

2
(Xi − x)2

´i2
Kh (x−Xi) . (3)
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See e.g. the monographs of Wand and Jones (1996) and Fan and Gijbels (1996).
The local linear estimate of the slope is given by bf 0h(x) = b from (2), while
the local quadratic estimate of the second derivative is bf 00h (x) = c from (2).
Here again, following the scale space idea, bf 0h(x) and bf 00h (x) are considered to
be estimates of their expected values, which again represent derivatives of the
regression function f at the level of resolution h. In this paper, local linear fits
are used for curve estimation and estimation of the first derivative, while local
quadratic fits are used for second derivative estimation. This choice was made
for reasons of simplicity, see e.g. Fan and Gijbels (1996) for detailed discussion of
other choices of local polynomial order and the relation to derivative estimation.
Since these estimates are solutions of weighted least squares problems, their

variances can be obtained from standard formulas, using the estimate of residual
variance, σ2(x) = var (Y |X = x), based on the minimum value of (2) or (3) as
appropriate. For example, in the local linear case, the variance of the slope
estimates is the lower right entry of the 2× 2 matrix

σ2(x)


1

P
i
(Xi−x)Kh(x−Xi)P
i
Kh(x−Xi)P

i
(Xi−x)Kh(x−Xi)P
i
Kh(x−Xi)

P
i
(Xi−x)2Kh(x−Xi)P

i
Kh(x−Xi)


−1

.

Similarly, in the local quadratic case, the variance of the second derivative esti-
mate is the lower right entry of the 3× 3 matrix

4σ2(x)


1

P
i
(Xi−x)Kh(x−Xi)P
i
Kh(x−Xi)

P
i
(Xi−x)2Kh(x−Xi)P

i
Kh(x−Xi)P

i
(Xi−x)Kh(x−Xi)P
i
Kh(x−Xi)

P
i
(Xi−x)2Kh(x−Xi)P

i
Kh(x−Xi)

P
i
(Xi−x)3Kh(x−Xi)P

i
Kh(x−Xi)P

i
(Xi−x)2Kh(x−Xi)P

i
Kh(x−Xi)

P
i
(Xi−x)3Kh(x−Xi)P

i
Kh(x−Xi)

P
i
(Xi−x)4Kh(x−Xi)P

i
Kh(x−Xi)



−1

.

3.3 Statistical Variation in Derivative Estimation

In Figure 5 above, it was noted that first derivative inference can be done at
smaller scales than second derivative inference. This can be easily understood
by studying the variances of bf 0h(x) and bf 00h (x). For either density estimation or
regression, these have asymptotic (as n→∞) order

var
³ bf 0h(x)´ ∼ C0

nh3
,

var
³ bf 00h (x)´ ∼ C00

nh5
,

for some constants C 0 and C00. For detailed calculation of this, and other
scale space asymptotic results, see Chaudhuri and Marron (2000). Thus for
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small bandwidths h (important for good performance of smoothing methods),
the second derivative will have larger variance. More specifically, it is clear
that our inference in scale space will never flag significance at “small scales”, in
particular of the order h = o

¡
n−1/3

¢
for the first derivative, and of the order

h = o
¡
n−1/5

¢
for the second derivative, because in those cases the variance will

tend to infinity. The actual features that are found in a specific case will be
determined by a trade off of this variance, with the sample size and the strength
of the underlying features, as reflected in the magnitudes of the derivatives.
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