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Abstract

High Dimension Low Sample Size statistical analysis is becoming in-
creasingly important in a wide range of applied contexts. In such sit-
uations, it is seen that the appealing discrimination method called the
Support Vector Machine can be improved. The revealing concept is
�data piling� at the margin. This leads naturally to the development of
�Distance Weighted Discrimination,� which also is based on modern com-
putationally intensive optimization methods, and seems to give improved
�generalizability.�

1 Introduction
An area of emerging importance in statistics is the analysis of High Dimension
Low Sample Size (HDLSS) data. This area can be viewed as a subset of multi-
variate analysis, where the dimension d of the data vectors is larger (often much
larger) than the sample size n (the number of data vectors available). There is
a strong need for HDLSS methods in the areas of genetic micro-array analysis
(usually a very few cases, where many gene expression levels have been mea-
sured), chemometrics (typically a small population of high dimensional spectra)
and medical image analysis (a small population of 3-d shapes represented by vec-
tors of many parameters). Classical multivariate analysis is useless in HDLSS
contexts, because the Þrst step in the traditional approach is to �sphere the
data,� by multiplying by the root inverse of the covariance matrix, which does
not exist (because the covariance is not of full rank). Thus HDLSS settings
are a large fertile ground for the re-invention of almost all types of statistical
inference.
In this paper, the focus is on two class discrimination, with class labels +1

and −1. A clever and powerful discrimination method is the Support Vector
Machine (SVM), proposed by Vapnik (1982, 1995). The SVM is introduced
graphically in Figure 1 below. See Burges (1998) for an easily accessible intro-
duction. See Howse, Hush and Scovel (2002) for a recent overview of related
mathematical results, including performance bounds. The Þrst contribution of
the present paper is a novel view of the performance of the SVM, in HDLSS
settings, via projecting the data onto the normal vector of the separating hy-
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perplane. This view reveals substantial �data piling� at the �margin� (deÞned
below), as shown for example in Figure 2.
Figure 3 below suggests that data piling may adversely affect the �gener-

alization performance� (how well new data from the same distributions can
be discriminated) of the SVM in HDLSS situations. The major contribution
of this paper is a new discrimination method, called �Distance Weighted Dis-
crimination� (DWD), which avoids the data piling problem, and is seen in the
simulations in Section 3 to give the anticipated improved generalizability. Like
the SVM, the computation of the DWD is based on computationally intensive
optimization, but while the SVM uses well-known quadratic programming algo-
rithms, the DWD uses recently developed interior-point methods for so-called
Second-Order Cone Programming (SOCP) problems, see Alizadeh and Gold-
farb (2001), discussed in detail in Section 2.2. The improvement available in
HDLSS settings from the DWD comes from solving an optimization problem
which yields improved data piling properties, as shown in Figure 4 below.
The two-class discrimination problem begins with two sets (classes) of d-

dimensional training data vectors. A toy example, with d = 2 for easy viewing
of the data vectors via a scatterplot, is given in Figure 1. The Þrst class, called
�Class +1,� has n+ = 15 data vectors shown as red plus signs, and the second
class, called �Class -1,� has n− = 15 data vectors shown as blue circles. The
goal of discrimination is to Þnd a rule for assigning the labels of +1 or −1 to
new data vectors, depending on whether the vectors are �more like Class +1� or
are �more like Class -1.� In this paper, it is assumed that the Class +1 vectors
are independent and identically distributed random vectors from an unknown
multivariate distribution (and similarly, but from a different distribution, for
the Class -1 vectors).
For simplicity only �linear� discrimination methods are considered here.

Note that �linear� is not meant in the common statistical sense of �linear func-
tion of the training data� (in fact most methods considered here are quite non-
linear in that sense). Instead this means that the discrimination rule is a simple
linear function of the new data vector. In particular, there is a direction vector
w, and a threshold β, so that the new data vector x is assigned to the Class +1
exactly when x0w+β ≥ 0. This corresponds to separation of the d-dimensional
data space into two regions by a hyperplane, with normal vector w, whose po-
sition is determined by β. In Figure 1, one such normal vector w is shown
as the thick purple line, and the corresponding separating hyperplane (in this
case having dimension d = 2 − 1 = 1) is shown as the thick green dashed line.
Extensions to the �nonlinear� case are discussed at various points below.
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Figure 1: Toy Example illustrating the Support Vector Machine. Class +1
data shown as red plus signs, and Class -1 data shown as blue circles. The
separating hyperplane is shown as the thick dashed line, with the corresponding
normal vector shown as the thick solid line. The residuals, ri, are the thin

lines, and the support vectors are highlighted with black boxes.

The separating hyperplane shown in Figure 1 does an intuitively appealing
job of separating the two data types. This is the SVM hyperplane, and the
remaining graphics illustrate how it was constructed. The key idea behind the
SVM is to Þnd w and β to keep the data in the same class all on the same side
of, and also �as far as possible from�, the separating hyperplane. This is quan-
tiÞed in a maximin type way, focussing on only the data points that are closest
to the separating hyperplane, called �support vectors,� highlighted in Figure 1
with black boxes. The hyperplanes parallel to the separating hyperplane that
intersect the support vectors are shown as thin black dashed lines. The dis-
tance between these hyperplanes is called the �margin.� The SVM Þnds the
separating hyperplane that maximizes the margin, with the solution for these
data being shown in Figure 1. An alternative view is that we Þnd two closest
points, one in the convex hull of the Class +1 points and one in the convex
hull of the Class -1 points. The SVM separating hyperplane will then be the
perpendicular bisector of the line segment joining two such points. Note that
the convex combinations deÞning these closest points only involve the support
vectors of each class.
The toy example in Figure 1 is different from the HDLSS focus of this paper

because the sample sizes n+ and n− are larger than the dimension d = 2. Some
perhaps surprising effects occur in HDLSS contexts. This point is illustrated
in Figure 2. The data in Figure 2 have dimension d = 39, with n+ = 20
data vectors from Class +1 represented as red plus signs, and n− = 20 data
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vectors from Class -1 represented as blue circles. The 2 distributions are nearly
standard normal (i.e., Gaussian with zero mean vector and identity covariance),
except that the mean in the Þrst dimension only is shifted to +2.2 (-2.2 resp.)
for Class +1 (-1 resp.). The data are not simple to visualize because of the
high dimension, but some important lower dimensional projections are shown
in the various panels of Figure 2.
The thick, dashed purple line in Figure 2 shows the Þrst dimension. Be-

cause the true difference in the Gaussian means lies only in this direction, this
is the normal vector of the Bayes risk optimal separating hyperplane. Discrim-
ination methods whose normal vector lies close to this direction should have
good �generalization� properties, i.e., new data will be discriminated as well as
possible. The thick purple line is carefully chosen to maximize �data piling.�
It represents the vector w = (x+ − x−)bΣ−1/2, where x+ (x− resp.) is the mean
vector of Class +1 (-1 resp.), and bΣ represents the covariance matrix of the full
data set, with the superscript −1/2 indicating the matrix square root of the
generalized inverse. The generalized inverse is needed in HDLSS situations,
because the covariance matrix is not of full rank. The direction w is nearly
that of Fisher Linear Discrimination, except that it uses the full data covari-
ance matrix, instead of the within class version. The Þrst dimension, together
with the vector w, determine a two-dimensional subspace, and the top panel of
Figure 2 shows the projection of the data onto that two-dimensional subspace.
Another way to think of the top panel is that the full d = 39-dimensional space
is rotated around the axis determined by the Þrst dimension, until the vector w
appears. Note that the data within each class appear to be collinear.
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Figure 2: Toy Example, illustrating potential for �data piling� problem in
HDLSS settings. Dashed purple line is the Bayes optimal direction, solid is

chosen by a variant of Fisher Linear Discrimination. Top panel is
two-dimensional projection, bottom panels are one-dimensional projections.

Other useful views of the data include one-dimensional projections, shown
in the bottom panels. The bottom left is the projection onto the true opti-
mal discrimination direction, shown as the dashed line in the top panel. The
bottom right shows the projection onto the direction w, which is the solid line
in the top panel. In both cases, the data are represented as a �jitter plot,�
with the horizontal coordinate representing the projection, and with a random
vertical coordinate used for visual separation of the points. Also included in
the bottom panel are kernel density estimates, which give another indication of
the structure of these univariate populations. As expected, the left panel re-
veals two Gaussian populations, with respective means ±2.2. The bottom right
panel shows that indeed the data essentially line up in a direction orthogonal
to the solid purple line, resulting in �data piling.� Data piling is not a useful
property for a discrimination rule, because it is driven only by very particular
aspects of the realization of the training data at hand. New data will have their
own quite different quirks, which will bear no relation to these. Another way of
understanding this comes from study of the solid direction vector w in the top
panel. Note that it is not far from orthogonal to the optimal direction vector
shown as the dashed line. Projection of a new data vector onto w cannot be
expected to provide effective discrimination.
It is of interest to view how Figure 2 changes as the dimension changes.

This can be done by viewing the movie in the Þle DWD1ÞgB.avi available in
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the web directory

http://www.unc.edu/depts/statistics/postscript/papers/marron/HDD/DWD/.

This shows the same view for d = 1, ..., 50. For small d, the solid line is not far
from the dashed line, but data piling begins as d approaches n++n−− 1 = 39.
Past that threshold the points pile up perfectly, and then the two piles slowly
separate, since for higher d, there are more �degrees of freedom of data piling.�
The data piling properties of the SVM are studied in Figure 3. Both the

data, and also the graphical representation, are the same as in Figure 2. The
only difference is that now the direction w is determined by the SVM. The top
panel shows that the direction vector w (the solid line) is already much closer
to the optimal direction (the dashed line) than for Figure 1. This reßects the
reasonable generalizability properties of the SVM in HDLSS settings. The SVM
is far superior to Fisher Linear Discrimination, because the normal vector, shown
as the thick purple line, is much closer to the Bayes optimal direction (recall
these were nearly orthogonal in Figure 2), shown as the dashed purple line.
However the bottom right panel suggests that there is room for improvement. In
particular, there is a clear piling up of data at the margin. As in Figure 2 above,
this shows that the SVM is affected by spurious properties of this particular
realization of the training data. This is inevitable in HDLSS situations, because
in higher dimensions there will be more support vectors (i.e., data points right
on the margin). Again, a richer visualization of this phenomenon can be seen
in the movie version in the Þle DWD1ÞgC.avi in the above web directory. The
improved generalizability of the SVM is seen over a wide range of dimensions.
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Figure 3: Same toy example illustrating partial �data piling� present in
HDLSS situations, for discrimination using the Support Vector Machine.

Format is same as Figure 2.

Room for improvement of the generalizability of the SVM, in HDLSS situ-
ations, comes from allowing more of the data points (beyond just those on the
margin) to have a direct impact on the direction vector w. In Section 2.2 we
propose the new Direction Weighted Discrimination method. Like the SVM,
this is the solution of an optimization problem. However, the new optimiza-
tion replaces the maximin �margin based� criterion of the SVM, by a different
function of the distances, ri, from the data to the separating hyperplane, shown
as thin purple lines in Figure 1. A simple way of allowing these distances to
inßuence the direction w is to optimize the sum of the inverse distances. This
gives high signiÞcance to those points that are close to the hyperplane, with
little impact from points that are farther away. Additional insight comes from
an alternative (dual) view. The normal to the separating hyperplane is again
the difference between a convex combination of the Class +1 points and a con-
vex combination of the Class -1 points, but now the combinations are chosen to
minimize the distance between the points divided by the square of the sum of
the square roots of the weights used in the convex combination. In this way,
all points receive a positive weight.
The difference between the two solutions can be seen in a very small example.

Suppose there is just one Class +1 point, (3; 0), and four Class -1 points, (−3; 3),
(−3; 1), (−3;−1), and (−3;−3). (We use Matlab-style notation, so that (a; b)
denotes the vector with vectors or scalars a and b concatenated into a single
column vector, etc.) The SVM maximizes the margin and gives (1, 0)x = 0 as
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the separating hyperplane. The DWD has four points on the left �pushing� on
the hyperplane and only one on the right (we are using the mechanical analogy
explained more in Section 2), and the result is that the separating hyperplane
is translated to (1, 0)x− 1 = 0. Note that the �class boundary� is at the mid-
point value of 0 for the SVM, while it is at the more appropriately weighted
value of 1 for the DWD. The SVM class boundary would be more appealing if
the unequal sample numbers are properly taken into account, but adding three
Class +1 points around (100; 0) equalizes the class sizes and leaves the result
almost unchanged (because the new points are so far from the hyperplane).
Let us now return to the example shown in Figures 2 and 3. The DWD

version of the normal vector is shown as the solid line in Figure 4. Note that this
is much closer to the Bayes optimal direction (shown as the dashed line), than
for either the modiÞed Fisher Linear discrimination rule shown in Figure 2, or
the SVM shown in Figure 3. The lower right hand plot shows no �data piling,�
which is the result of each data point playing a role in Þnding this direction in
the data.
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Figure 4: Same Toy Example, illustrating no �data piling� for Distance
Weighted Discrimination. Format is same as Figure 2.

Once again, the corresponding view in a wide array of dimensions is available
in the movie version in Þle DWD1ÞgD.avi in the above web directory. This
shows that the DWD gives excellent performance in this example over a wide
array of dimensions.
Note that all of these examples show �separable data,� where there exists a

hyperplane which completely separates the data. This is typical in HDLSS set-
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tings, but is not true for general data sets. Both SVM and DWD approach this
issue (and also potential gains in generalizability) via an extended optimization
problem, which incorporates penalties for �violation� (i.e., a data point being
on the wrong side of the separating hyperplane).
Precise formulations of the optimization methods that drive SVM and DWD

are given in Section 2. Simulation results, showing the desirable generalization
properties of DWD are given in Section 3. The main lesson is that every
discrimination rule has some setting where it is best. The main strength of
DWD is that its performance is close to that of the SVM when it is superior,
and also close to that of the simple mean difference method in settings where
it is best. Similar overall performance of DWD is also shown on a micro-array
data set in Section 4. Some open problems and future directions are discussed
in Section 5.
A side issue is that from a purely algorithmic viewpoint, one might wonder:

why do HDLSS settings require unusual treatment? For example, even when
dÀ n, the data still lie in an n dimensional subspace, so why not simply work
in that subspace? The answer to this lies in the concept of generalizability.
When one encounters new data, it is with the expectation that they could come
from anywhere in the full d-dimensional space: i.e., the distributions under
consideration are fully d-dimensional.

2 Formulation of Optimization Problems
This section gives details of the optimization problems underlying the origi-
nal Support Vector Machine, and the Distance Weighted Discrimination ideas
proposed here.
Let us Þrst set the notation to be used. The training data consists of n

d-vectors xi together with corresponding class indicators yi ∈ {+1,−1}. We let
X denote the d×n matrix whose columns are the xi�s, and y the n-vector of the
yi�s. The two classes of Section 1 are both contained inX, and are distinguished
using y. Thus, the quantities n+ and n− from Section 1 can be written as:
n+ =

Pn
i=1 1{yi=+1} and n+ =

Pn
i=1 1{yi=−1}, and we have n = n+ + n−. It

is convenient to use Y for the n × n diagonal matrix with the components of
y on its diagonal. Then, if we choose w ∈ <d as the normal vector (the thick
solid purple line in Figure 1) for our hyperplane (the thick dashed green line in
Figure 1) and β ∈ < to determine its position, the residual of the ith data point
(shown as a thin solid purple line in Figure 1) is

r̄i = yi(x
0
iw + β),

or in matrix-vector notation

r̄ = Y (X 0w + βe) = Y X 0w + βy,

where e ∈ <n denotes the vector of ones. We would like to choose w and β so
that all r̄i are positive and �reasonably large.� Of course, the r̄i�s can be made
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as large as we wish by scaling w and β, so w is scaled to have unit norm so that
the residuals measure the signed distances of the points from the hyperplane.
However, it may not be possible to separate the positive and negative data

points linearly, so we allow a vector ξ ∈ <n+ of errors, to be suitably penalized,
and deÞne the perturbed residuals to be

r = Y X 0w + βy + ξ. (1)

When the data vector xi lies on the proper side of the separating hyperplane
and the penalization is not too small, ξi = 0, and thus r̄i = ri. Hence the
notation in Figure 1 is consistent (i.e., there is no need to replace the label ri
by r̄i).
The SVM chooses w and β to maximize the minimum ri in some sense

(details are given in Section 2.1), while our Distance Weighted Discrimination
approach instead minimizes the sum of reciprocals of the ri�s augmented by a
penalty term (as described in Section 2.2). Both methods involve a tuning pa-
rameter that controls the penalization of ξ, whose choice is discussed in Section
2.3.
While the discussion here is mostly on �linear discrimination methods� (i.e.,

those that attempt to separate the classes with a hyperplane), it is important
to note that this actually entails a much larger class of discriminators, through
�polynomial embedding� and �kernel embedding� ideas. This idea goes back
at least to Aizerman, Braverman and Rozoner (1964) and involves either en-
hancing (or perhaps replacing) the data values with additional functions of the
data. Such functions could involve powers of the data, in the case of polynomial
embedding, or radial or sigmoidal kernel functions of the data. An important
point is that most methods that are sensible for the simple linear problem de-
scribed here are also viable in polynomial or kernel embedded contexts as well,
including not only the SVM and DWD, but also perhaps more naive methods
such as Fisher Linear Discrimination.

2.1 Support Vector Machine Optimization

For a general reference, see Burges (1998). Let us Þrst assume that ξ = 0. Then
we can maximize the minimum r̄i by solving

max δ, r̄ = Y X 0w + βy, r̄ ≥ δe, w0w ≤ 1,
where the variables are δ, r̄, w, and β. The constraints here are all linear except
the last. Since it is easier to handle quadratics in the objective function rather
than the constraints of an optimization problem, we reformulate this problem
into the equivalent (as long as the optimal δ is positive)

min
w,β

(1/2)w0w, Y X 0w + βy ≥ e.

Now we must account for the possibility that this problem is infeasible, so
that nonnegative errors ξ need to be introduced, with penalties; we impose a
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penalty on the 1-norm of ξ. Thus the optimization problem solved by the SVM
can be stated as

(PSVM ) min
w,β,ξ

(1/2)w0w + Ce0ξ, Y X 0w + βy + ξ ≥ e, ξ ≥ 0.

where C = CSVM > 0 is a penalty parameter.
This convex quadratic programming problem has a dual, which turns out to

be

(DSVM ) max
α

−(1/2)α0Y X 0XY α+ e0α, y0α = 0, 0 ≤ α ≤ Ce.

Further, both problems do have optimal solutions.
The optimality conditions for this pair of problems are:

XY α = w, y0α = 0,
s := Y X 0w + βy + ξ − e ≥ 0, α ≥ 0, s0α = 0;
Ce− α ≥ 0, ξ ≥ 0, (Ce− α)0ξ = 0.

These conditions are both necessary and sufficient for optimality because the
problems are convex. Moreover, the solution to the primal problem (PSVM ) is
easily recovered from the solution to the dual: merely set w = XY α and choose
β = yi − x0iw for some i with 0 < αi < C. (If α = 0, then ξ must be zero and
all components of y must have the same sign. We then choose β ∈ {+1,−1} to
have the same sign. Finally, if each component of α is 0 or C, we can choose β
arbitrarily as long as the resulting ξ is nonnegative.)
Burges (1998) notes that there is a mechanical analogy for the choice of the

SVM hyperplane. Imagine that each support vector exerts a normal repulsive
force on the hyperplane. When the magnitudes of these forces are suitably
chosen, the hyperplane will be in equilibrium. Note that only the support
vectors exert forces.
Let us give a geometrical interpretation to the dual problem, where we as-

sume that C is so large that all optimal solutions have α < Ce. Note that
y0α = 0 implies that e0+α+ = e0−α−, where α+ (α−) is the subvector of α cor-
responding to the Class +1 (Class -1) points and e+ (e−) the corresponding
vector of ones. It makes sense to scale α so that the sum of the positive α�s
(and that of the negative ones) equals 1; then these give convex combinations
of the training points. We can write α in (DSVM ) as ζ�α, where ζ is positive
and �α satisÞes these extra scaling constraints. By maximizing over ζ for a Þxed
�α, it can be seen that (DSVM ) is equivalent to maximizing 2/kXY �αk2 over
nonnegative �α+ and �α− that each sum to one. But XY �α = X+�α+ − X−�α−,
where X+ (X−) is the submatrix of X corresponding to the Class +1 (Class -1)
points, so we are minimizing the distance between points in the convex hulls of
the Class +1 points and of the Class -1 points. Further, the optimal w is the
difference of such a pair of closest points.
From the optimality conditions, we may replace w in (PSVM ) byXY α, where

α is a new unrestricted variable. Then both (PSVM ) and (DSVM ) involve the
data X only through the inner products of each training point with each other,
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given in the matrix X 0X. This has implications in the extension of the SVM
approach to the nonlinear case, where we replace the vector xi by Φ(xi) for
some possibly nonlinear mapping Φ. Then we can proceed as above as long as
we know the symmetric kernel function K with K(xi, xj) := Φ(xi)0Φ(xj). We
replace X 0X with the n× n symmetric matrix (K(xi, xj)) and solve for α and
β. We can classify any new point x by the sign of

w0Φ(x) + β = (Φ(X)Y α)0Φ(x) + β =
X
i

αiyiK(xi, x) + β.

Here Φ(X) denotes the matrix with columns the Φ(xi)�s. It follows that knowl-
edge of the kernel K suffices to classify new points, even if Φ and thus w are
unknown. See Section 4 in Burges (1998).
We remark that imposing the penalty C on the 1-norm of ξ in (PSVM ) is

related to imposing a penalty in the original maximin formulation. Suppose w,
β, and ξ solve (PSVM ) and α solves (DSVM ), and assume that w and α are
both nonzero. Then by examining the corresponding optimality conditions, we
can show that the scaled variables (w̄, β̄, ξ̄) = (w,β, ξ)/kwk solve

min −δ +De0ξ̄, Y X 0w̄ + β̄y + ξ̄ ≥ δe, (1/2)w̄0w̄ ≤ 1/2, ξ̄ ≥ 0,

with D := C/e0α. Conversely, if the optimal solution to the latter problem has
δ and the Lagrange multiplier λ for the constraint (1/2)w̄0w̄ ≤ 1/2 positive,
then a scaled version solves (PSVM ) with C := D/(δλ).
Finally, we note that, if all xi�s are scaled by a factor γ, then the optimal w is

scaled by γ−1 and the optimal α by γ−2. It follows that the penalty parameter
C should also be scaled by γ−2. Similarly, if each training point is replicated p
times, then w remains the same while α is scaled by p−1. Hence a reasonable
value for C is some large constant divided by n times a typical distance between
xi�s squared. The choice of C is discussed further in Section 2.3.

2.2 Distance Weighted Discrimination Optimization

We now describe how the optimization problem for our new approach is deÞned.
We choose as our new criterion that the sum of the reciprocals of the residuals,
perturbed by a penalized vector ξ, be minimized: thus we have

min
r,w,β,ξ

X
i

(1/ri) +Ce
0ξ, r = Y X 0w+ βy + ξ, (1/2)w0w = 1/2, r ≥ 0, ξ ≥ 0,

where again C = CDWD > 0 is a penalty parameter. (More generally, we could
choose the sum of f(ri)�s, where f is any smooth convex function that tends to
+∞ as its argument approaches 0 from above. However, the reciprocal leads to
a nice optimization problem, as we show below.)
Of course, in the problem above, ri must be positive to make the objective

function Þnite. We now reformulate the problem in the form of a so-called
second-order cone programming (SOCP) problem. This is a problem with a
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linear objective, linear constraints, and the requirement that various subvectors
of the decision vector must lie in second-order cones of the form

Sm+1 := {(ψ;u) ∈ <m+1 : ψ ≥ kuk}.
For m = 1, 2, and 3, this cone is the nonnegative real line, a (rotated) quadrant,
and the right cone with axis (1; 0; 0) respectively. To do this, write ri = ρi−σi,
where ρi = (ri+1/ri)/2, σi = (1/ri−ri)/2. Then ρ2i−σ2i = 1, or (ρi;σi; 1) ∈ S3,
and ρi + σi = 1/ri. We also write (1/2)w

0w ≤ 1/2 as (1;w) ∈ Sd+1. We then
obtain

minω,w,β,ξ,ρ,σ,τ Ce0ξ + e0ρ + e0σ
Y X 0w + βy + ξ − ρ + σ = 0,

ω = 1,
(PDWD) τ = e,

(ω;w) ∈ Sd+1, ξ ≥ 0, (ρi;σi; τ i) ∈ S3, i = 1, 2, . . . , n.
Such SOCP problems have nice duals. Consider the problem

(P ) min
x,z

c0x+ d0z, Ax+Bz = b, x ∈ G,

whereG is a closed convex cone with a nonempty interior containing no line; here
z is a free variable. (In our case, x includes the variables (ω, w), ξ, and (ρ,σ, τ),
z consists of just the variable β, and G is a cartesian product of second-order
cones.) Then (P ) has a dual problem:

(D) max
θ

b0θ, A0θ + s = c, B0θ = d, s ∈ G∗,

where G∗ is the dual cone {s : s0x ≥ 0 for all x ∈ G}. It is easy to see that
every feasible solution for (P ) has objective value at least that of every feasible
solution to (D):

c0x+ d0z = (A0θ + s)0x+ (B0θ)0z = (Ax+Bz)0θ + s0x = b0θ + s0x ≥ b0θ, (2)
but it is also true that, if both problems have strictly feasible solutions (x ∈
int G, s ∈ int G∗), then both have optimal solutions and their optimal values
are equal (e.g., see Ekeland and Temam (1976)). For SOCPs, this dual is very
nice, because if G is a product of second-order cones (in our case, G = Sd+1 ×
S1 × · · · × S1 × S3 × · · · × S3), then G is its own dual.
Let α, η, and γ be the dual variables (like θ above) corresponding to our

three sets of equality constraints. We obtain the dual problem

maxα,η,γ,π,p,κ,λ,µ,ν η + e0γ
η + π = 0,

XY α + p = 0,
y0α = 0,
α + κ = Ce,

−α + λ = e,
α + µ = e,

(DDWD) γ + ν = 0,

13



(π; p) ∈ Sd+1, κ ≥ 0, (λi;µi; νi) ∈ S3, i = 1, 2, . . . , n.
This dual problem can be considerably simpliÞed. Note that η = −π ≤ −kpk,
so η = −kXY αk at optimality. Also, λi = 1 + αi and µi = 1 − αi, so αi ≥ 0
and γi = −νi ≤ 2

√
αi with equality at optimality. Hence the problem can be

rewritten as

max
α

−kXY αk+ 2e0√α, y0α = 0, 0 ≤ α ≤ Ce.

(Here
√
α denotes the vector whose components are the square roots of those of

α.) Compare with (DSVM ) above, which is identical except for having objective
function −(1/2)kXY αk2 + e0α.
Let us check the sufficient condition for existence of optimal solutions and

equality of their objective values. We want strictly feasible solutions to both
(PDWD) and (DDWD). For the Þrst, choose ω := 1, w := 0, β := 0, σ := 0,
τ := e, and ξ := ρ := 2e. For the second (assuming y has both positive
and negative entries), let αi := C/(2e0y+) if yi = 1 and αi := C/(2e0y−) if
yi = −1, where y+ and y− are the positive and negative parts of y: y = y+−y−,
y+, y− ≥ 0, y0+y− = 0. This satisÞes y0α = 0 and puts α strictly between 0 and
Ce, so κ > 0. Now we set p := −XY α and π := kpk+ 1, so (π; p) ∈ int Sd+1.
Finally, set λi := 1 + αi > µi := 1 − αi, and set γi := νi := 0, so that
(λi;µi; νi) ∈ int S3 for each i. This provides a strictly feasible solution to
(DDWD). Hence both problems have optimal solutions with equal objective
values. From (2), we know that s0x = 0 at optimality, so

(π; p)0(ω;w) = κ0ξ = (λi;µi; νi)
0(ρi;σi; 1) = 0

for each i. Now it is important to note that if (ψ;u) and (φ; v) both lie in Sm+1
and are orthogonal, then either φ = 0, v = 0, or φ > kvk and ψ = 0, u = 0,
or φ = kvk > 0 and (ψ;u) is a nonnegative multiple of (φ;−v). Thus we see
that, at optimality, either XY α = 0 or w = XY α/kXY αk. Also, we know
that λi = 1 + αi, µi = 1 − αi, and νi = −2√αi at optimality, so from the
orthogonality result it must be that αi is positive, with ρi = (αi + 1)/(2

√
αi)

and σi = (αi − 1)/(2√αi). Hence we Þnd the optimality conditions:

Y X 0w + βy + ξ − ρ+ σ = 0, y0α = 0,
α > 0, α ≤ Ce, ξ ≥ 0, (Ce− α)0ξ = 0,
Either XY α = 0 and kwk ≤ 1,
or w = XY α/kXY αk,
ρi = (αi + 1)/(2

√
αi), σi = (αi − 1)/(2√αi), for all i.

In the HDLSS setting, it may be inefficient to solve (PDWD) and (DDWD)
directly. Indeed, the primal variable w is of dimension dÀ n, the sample size,
and similarly the dual problem has a block of d constraints. Instead, we can
proceed as follows. First factor X as QR, where Q ∈ <d×n has orthonormal
columns and R ∈ <d×n is upper triangular: this can be done by a (modiÞed)
Gram-Schmidt procedure or by orthogonal triangularization, see, e.g., Golub
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and Van Loan [6]. Then we can solve (PDWD) and (DDWD) with X replaced
by R, so that in the primal problem Y R0w̄, with (ω; w̄) ∈ Sn+1, replaces Y X 0w,
with (ω;w) ∈ Sd+1. Similarly, in (DDWD) replaceXY α+p = 0 byRY α+p̄ = 0,
and replace (π; p) ∈ Sd+1 by (π; p̄) ∈ Sn+1. Thus the number of variables and
constraints depends only on n, not d.
Note that, since X 0 = R0Q0, any feasible solution (ω, w̄,β, ξ, ρ,σ, τ) of the

new problem gives a feasible solution (ω, w,β, ξ, ρ,σ, τ) of the original prob-
lem on setting w = Qw̄ (kwk = kw̄k), since Y X 0w = Y R0Q0Qw̄ = Y R0w̄;
moreover, this solution has the same objective value. Conversely, any feasi-
ble solution (ω, w,β, ξ, ρ,σ, τ) of the original problem gives a feasible solution
(ω, w̄,β, ξ, ρ,σ, τ) of the new problem with the same objective function value by
setting w̄ = Q0w, since Y R0w̄ = Y R0Q0w = Y X 0w and kw̄k ≤ kwk. We there-
fore solve the new smaller problems and set w = Qw̄ to get an optimal solution
to the original problem. (We can also avoid forming Q, even in product form
[6], Þnding R by performing a Cholesky factorization R0R = X 0X of X 0X; if R
is nonsingular, we recover w as XR−1w̄, but the procedure is more complicated
if R is singular, and we omit details.)
There is again a mechanical analogy for the separating hyperplane found

by the DWD approach (we assume that all optimal solutions to (DDWD) have
α < Ce). Indeed, the function 1/r is the potential for the force 1/r2, so the
hyperplane is in equilibrium if it is acted on by normal repulsive forces with
magnitude 1/r2i at each training point. Indeed, ri = ρi − σi = 1/

√
αi at

optimality, so the force is αi at training point xi. The dual constraint y0α = 0
implies that the vector sum of these forces vanishes, and the fact that XY α is
proportional to w from the optimality conditions implies that there is no net
torque either.
We now give an interpretation of (DDWD), similar to that of Þnding the

closest points in the two convex hulls for (DSVM ). Indeed, if we again write
α as ζ�α, where ζ is positive and e0+�α+ = e0−�α− = 1, the objective function
becomes

max
ζ,�α

−ζkXY �αk+ 2
p
ζe0
√
�α,

and if we maximize over ζ for Þxed �α we Þnd ζ = (e0
√
�α/kXY �αk)2. Substituting

this value, we see that we need to choose convex weights �α+ and �α− to maximize

(e0+
p
�α+ + e

0
−
p
�α−)2/kX+�α+ −X−�α−k.

Thus we again want to minimize the distance between points in the two convex
hulls, but now weighted by the square of the sum of the square roots of the
convex weights. This puts a positive weight on every training point. As long
as the convex hulls are disjoint, the difference of these two points, XY �α =
X+�α+ −X−�α−, will be nonzero, and the normal to the separating hyperplane
will be proportional to this vector by the optimality conditions.
In the case that we expect, XY α 6= 0, w has the form XY α for a (scaled) α.

Hence it seems that we can once again handle the nonlinear case using a kernel
function K. But software for SOCP problems assumes the formulation is as
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above, i.e., we cannot replace w byXY α and add the constraint αY X 0XY α ≤ 1.
Instead we can proceed as follows. Indeed, this approach also works in the
exceptional case, as we see below.
Form the matrix M := (K(xi, xj)) as in the SVM case, and factorize it

as M = R0R, e.g., using the Cholesky factorization. Now replace Y X 0w by
Y R0w̄ in (PDWD), and replace (ω;w) ∈ Sd+1 by (ω; w̄) ∈ Sn+1. Similarly, in
(DDWD) replace XY α + p = 0 by RY α + p̄ = 0, and replace (π; p) ∈ Sd+1 by
(π; p̄) ∈ Sn+1. (This is like the dimension-reducing technique discussed above.)
Suppose we solve the resulting problems to get w̄, α and β.
If RY α 6= 0, then it follows as in the linear case that w̄ = RY ᾱ, where

ᾱ := α/kRY αk. But even if RY α = 0, we note that w̄ appears in (PDWD) only
in the constraints Y R0w̄ + · · · = 0 and (ω; w̄) ∈ Sn+1, and so we can replace
w̄ by the minimum norm �w with Y R0 �w = Y R0w̄. The optimality conditions of
this linear least-squares problem imply that �w = RY ᾱ for some ᾱ. We claim
that we can classify a new point x as before by the sign of

P
i ᾱiyiK(xi, x)+β,

where ᾱ is obtained by one of the two methods above..
Indeed, since we can restrict w̄ to be of the form RY ᾱ, (PDWD) is equivalent

to the problem with Y R0w̄ replaced by Y R0RY ᾱ, and (ω; w̄) ∈ Sn+1 replaced
by ᾱ0Y R0RY ᾱ ≤ 1; w̄ can then be retrieved by setting it to RY ᾱ. Now we can
make the same argument for the version of (PDWD) with Y Φ(X)0w + · · · = 0
and (ω;w) ∈ Sd+1. We can assume that w is of the form Φ(X)Y �α and substitute
for w to get Y Φ(X)0Φ(X)Y �α + · · · = 0 and �α0Y Φ(X)0Φ(X)Y �α ≤ 1. and then
recover w as Φ(X)Y �α. But the two problems, one with ᾱ and one with �α, are
identical, since

Y R0RY = YMY = Y (K(xi, xj))Y = Y Φ(X)0Φ(X)Y,

and so both have identical optimal solutions, and hence we can classify new
points by the sign of w0Φ(x) + β = ᾱ0Y Φ(X)0Φ(x) + β =

P
i ᾱiyiK(xi, x) + β,

as claimed.
We should note that the �bad� case XY α = 0 can happen, e.g., with n = 2,

x1 = x2, and y1 = −y2. Then α1 = α2 = C and XY α = 0. But in this case, all
we need is the extra solution of a linear least-squares problem.
Let us give an interpretation of the penalty parameter C = CDWD and some

suggestions on how it can be set. Recall that r̄ is the unperturbed residual, so
that r̄i := yi(w

0xi + β), which can be of any sign. If this quantity is given,
(PDWD) will choose the nonnegative perturbation ξi to minimize 1/(r̄i + ξi) +
Cξi. It is easy to see that the resulting ξi (if positive) satisÞes (r̄i+ξi)

−2 = C, so
that r̄i+ ξi = C

−1/2. This is the argument where the derivative of the function
f(t) := 1/t has slope −C, and it is not hard to check that the contribution of
the ith data point to the objective function of (PDWD) is f̄(r̄i), where f̄ is the
function that agrees with f to the right of C−1/2, and is a straight line with slope
−C to the left, with the constant part chosen to make the function continuous
(and continuously differentiable). Hence instead of perturbing the residuals and
penalizing the amount of perturbation, we can view the approach as perturbing
the criterion function f so that it applies to negative as well positive residuals.
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(Indeed, if we used any other smooth convex function f (with f(t) tending
to +∞ as t approaches 0 from above and f 0(t) tending to zero as t tends to
∞) of the perturbed residuals to minimize in (PDWD), the effect of allowing
perturbations and imposing a penalty of C on their sum would be equivalent to
using a different function f̄ , which agrees with f to the right of the point where
the slope is −C and is a straight line with slope −C to its left, on the original
unperturbed residuals.)
This suggests using a value for C that is a typical slope of the reciprocal

function. Hence we Þnd that C should scale with the inverse square of a distance
between the training points, but not with the number of training points, and
similarly to the SVM case, a reasonable value will be a large constant divided
by the square of a typical distance between training points.
SOCP problems are certainly much less well-known in optimization than

quadratic programming problems as in the SVM approach. However, there
has been rising interest in them recently, because of their power in modeling
and their amenability to efficient algorithms, see Alizadeh and Goldfarb (2001),
Lobo, Vandenberghe, Boyd and Lebret (1998), Nesterov and Todd (1997, 1998),
Tsuchiya (1999) and **** (2001b). We used the SDPT3 package of **** (2001b)
with the Nesterov-Todd direction in our computations. This is an interior-
point code that, roughly, solves barrier versions of (PDWD) and (DDWD) with
objective functions replaced by

Ce0ξ + e0ρ+ e0σ − χ ln(ω2 − w0w)− χ
X
i

(ln ξi + ln(ρ
2
i − σ2i − τ2i ))

and
η + e0γ + χ ln(π2 − p0p) + χ

X
i

(lnκi + ln(λ
2
i − µ2i − ν2i ))

respectively, for a sequence of positive values of the barrier parameter χ ap-
proaching zero. Because free variables are not handled by the current version of
SDPT3, we added a variable ψ and the restriction (ψ;β) ∈ S2 (where ψ appears
nowhere else) to replace the free variable β.

2.3 Choice of tuning parameter

A recommendation for the choice of the tuning parameter C is made here. It
is important to note that this recommendation is intended for use in HDLSS
settings. The ideas of Wahba, Lin, Lee and Zhang (2001) and Lin, Wahba,
Zhang, and Lee (2002) are recommended instead in non-HDLSS situations.
For both SVM and DWD, the above simple considerations suggest that C

should scale with the inverse square of the distance between training points, and
in the SVM case, inversely with the number of training points. This will result
in a choice that is essentially �scale invariant,� i.e., if the data are all multiplied
by a constant, or replicated a Þxed number of times, the discrimination rule will
stay the same.
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As a notion of �typical distance,� we suggest the median of the pairwise
Euclidean distances between classes,

dt = median {d(xi, xi0) : yi = +1, yi0 = −1} .
Other notions of �typical distance� are possible as well.
Then we recommend using �a large constant� divided by the typical distance

squared, possibly divided by the number of data points in the SVM case. In
all examples in this paper, we use C = 100/d2t . More careful choice of C in
HDLSS situations will be explored in an upcoming paper.

3 Simulation Results
In this section, simulation methods are used to compare the performance of
DWD with the SVM. Also of interest is to compare both of these methods with
the very simple �Mean Difference� (MD) method.
The MD is based on the class sample mean vectors:

x+ =
1

n+

nX
i=1

xi1{yi=+1},

x− =
1

n−

nX
i=1

xi1{yi=−1},

and a new data vector is assigned to Class +1 (-1 resp.), when it is closer to x+

(x− resp.). This discrimination method can also be viewed as attempting to
Þnd a separating hyperplane (as done by the SVM and DWD) between the two
classes. This is the hyperplane with normal vector x+ − x−, which bisects the
line segment between the class means. Note that this compares nicely with the
interpretations of the dual problems (DSVM ) and (DDWD), where again the
normal vector is the difference between two convex combinations of the Class
+1 and Class -1 points. The MD is Bayes Risk optimal for discrimination if
the two class distributions are spherical Gaussian distributions (e.g. both have
identity covariance matrices), and in a very limited class of other situations.
Fisher Linear Discrimination can be motivated by adjusting this idea to the

case where the class covariances are the same, but of more complicated type.
In classical multivariate settings (i.e., nÀ d), FLD is always preferable to MD,
because even when MD is optimal, FLD will be quite close, and there are situa-
tions (e.g. when the covariance structure is far from spherical) where the FLD is
greatly improved. However, this picture changes completely in HDLSS settings.
The reason is that FLD requires an estimate of the covariance matrix, based on
a completely inadequate amount of data. This is the root of the �data piling�
problem illustrated in Figure 2. In HDLSS situations the stability of MD gives
it far better (even though it may be far from optimal) generalization properties
than FLD. Hence, MD is taken as the �classical statistical representative� in
this simulation study.

18



In the simulation study presented here, for each example, training data sets
of size n+ = n− = 25 and testing data sets of size 200, of dimensions d =
10, 40, 100, 400, 1600 were generated. The dimensions are intended to cover
a wide array of HDLSS settings (from �not HDLSS� to �extremely HDLSS�).
Each experiment was replicated 100 times. The graphics summarize the mean
(over the 100 replications) of the proportion (out of the 200 members of each
test data set) of incorrect classiÞcations. To give an impression of the Monte
Carlo variation, simple 95% conÞdence intervals for the mean value are also
included as �error bars.�
The Þrst distribution, studied in Figure 5, is essentially that of the examples

shown in Figures 2-4. Both class distributions have unit covariance matrix,
and the means are 0, except in the Þrst coordinate direction, where the means
are +2.2 (−2.2 resp.) for Class +1 (-1 resp.). If it is known that one should
look in the direction of the Þrst coordinate axis, then the two classes are easy to
separate, as shown in the bottom left panels of Figures 2-4. However, in high
dimensions, it can be quite challenging to Þnd that direction.
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Figure 5: Summary of simulation results for spherical Gaussian
distributions. As expected, MD is the best, but not signiÞcantly better than

DWD.

The red curve in Figure 5 shows the generalizability performance of MD for
this example. The classiÞcation error goes from about 2% for d = 10, to about
22% for d = 1600. For this example, the MD is Bayes Risk optimal, so the other
methods have a worse error rate. Note that the SVM, represented by the blue
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curve, has substantially worse error (the conÞdence intervals are generally far
from overlapping), due to the data piling effect illustrated in Figure 3. However
the purple curve, representing DWD, is much closer to optimal (the conÞdence
intervals overlap). This demonstrates the gains that are available from explicitly
using all of the data in choosing the separating hyperplane in HDLSS situations.
While the MD is Bayes Risk optimal for spherical Gaussian distributions, it

can be far from optimal in other cases. An example of this type, called the �out-
lier mixture� distribution, is a mixture distribution where 80% of the data are
from the distribution studied in Figure 5, and the remaining 20% are Gaussian
with mean +100 (−100 resp.) in the Þrst coordinate, +500 (−500 resp.) in the
second coordinate, and 0 in the other coordinates. Excellent discrimination for
this distribution is again done by the hyperplane whose normal vector is the Þrst
coordinate axis direction, because that separates the Þrst 80% of the data well,
and the remaining 20% are far away from the hyperplane (and on the correct
side). Since the new 20% of the data will never be support vectors, SVM is
expected to be similar to that in Figure 5. However, the new 20% of the data
will create grave difficulties for the MD, because outlying observations have a
strong effect on the sample mean, which will skew the normal vector towards
the outliers, resulting in a poorly performing hyperplane. This effect is shown
in Figure 6.
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Figure 6: Simulation comparison, for the outlier mixture distribution. SVM
is the best method, but not signiÞcantly better than DWD.

Note that in Figure 6, the SVM is best (as expected), because the outlying
data are never near the margin. The MD has very poor error rate (recall that
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50% error is expected from the classiÞcation rule which ignores the data, and
instead uses a coin toss!), because the sample means are dramatically impacted
by the 20% outliers in the data. DWD nearly shares the good properties of the
SVM because the outliers receive a very small weight. While the DWD error
rate is consistently above that for the SVM, lack of statistical signiÞcance of the
difference is suggested by the overlapping error bars.
Figure 7 shows an example where the DWD is actually the best of these three

methods. Here the data are from the �wobble distribution,� which is again a
mixture, where again 80% of the distribution are from the shifted spherical
Gaussian as in Figure 5, and the remaining 20% are chosen so that the Þrst
coordinate is replaced by +0.1 (-0.1 resp.), and just one randomly chosen coor-
dinate is replaced by +100 (-100, resp.), for an observation from Class +1 (-1,
resp.). That is, a few pairs of observations are chosen to violate the ideal mar-
gin, in ways that push directly on the support vectors. Once again outliers are
introduced, but this time, instead of being well away from the natural margin
(as in Figure 7), they appear in ways that directly impact it.
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Figure 7: Simulation comparison, for the �wobble� distribution. This is a
case where DWD gives superior performance to MD and SVM.

As in the Figure 7 example, the few outliers have a serious and drastic effect
on MD, giving it far inferior generalization performance. Because the outliers
directly impact the margin, SVM is somewhat inferior to DWD (here the differ-
ence is generally statistically signiÞcant, because the conÞdence intervals don�t
overlap), whose �weighted inßuence of all observations� allows better adapta-
tion.
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Figure 8 compares performance of these methods for the �nested sphere�
data. This example is intended to directly address performance in a �polyno-
mial embedded� setting, using the ideas of Aizerman, Braverman and Rozoner
(1964). Here the Þrst d/2 dimensions are chosen so that Class -1 data are stan-

dard Gaussian, and Class +1 data are
·
1+2.2

√
2/d

1−2.2
√
2/d

¸1/2
times Standard Gaussian.

This scale factor is chosen to make the �amount of separation� comparable to
that in Figure 5, except that instead of �separation of the means,� it is �sepa-
ration in a radial direction.� In particular the Þrst d/2 coordinates of the data
are �nested Gaussian spheres.� Such data are the perhaps canonical example
of data that are very hard to separate by hyperplanes (a simplifying assumption
of this paper). However, polynomial embedding provides a simple, yet elegant,
solution to this problem. In the present case, this is done by taking the re-
maining d/2 entries of each data vector to be the squares of the Þrst d/2. This
provides a path to very powerful discrimination, because linear combinations of
the entries includes the sum of the squares of the Þrst d/2 coordinates, which
has excellent discriminatory power.
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Figure 8: Simulation comparison, for the �nested sphere� distribution. This
case shows a fair overall summary, because each method is best for some d,

and DWD tends to be near whichever method is best.

Because all of MD, SVM and DWD can Þnd the sum of squares, it is not
surprising that all give quite acceptable performance. Because it was motivated
by Gaussian considerations, and the embedded data are highly non-Gaussian
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in nature (lying in at most a d/2 dimensional parabolic manifold), one might
expected that MD would be somewhat inferior. However, it is surprisingly the
best of the 3 for higher dimensions d (we don�t know why). Also unclear is why
SVM is best only for dimension 10. Perhaps less surprising is that DWD is
�in between� in the sense of being best for intermediate dimensions. The key
to understanding these phenomena may lie in understanding how �data piling�
works in polynomial embedded situations.
We have also studied other examples. These are not shown to save space,

and because the lessons learned in the other examples are fairly similar. Figure
8 is a good summary: each method is best in some situations, and the special
strength of DWD comes from its ability to frequently mimic the performance of
either MD or the SVM, in situations where it is best.

4 Micro-array data analysis
This section shows the effectiveness of DWD in the real data analysis of gene
expression micro-array data. The data are from Perou et al. ([12]). The data
are vectors representing relative expression of d = 456 genes (chosen from a
larger set as discussed in Perou et al. [12]), from breast cancer patients. Because
there are only n = 136 total cases available, this is a HDLSS setting. HDLSS
problems are very common for micro-array data because d, the number of genes,
can be as high as tens of thousands, and n, the number of cases, is frequently
less than 100, because of the high cost of gathering each data point.
There are two data sets available from two studies. One is used to train

the discrimination methods, and the second is used to test performance (i.e.,
generalizability). There are 5 classes of interest, but these are grouped into
pairs because DWD is currently only implemented for 2 class discrimination.
Here we consider 4 groups of pairwise problems, chosen for biological interest:

Group 1 Luminal cancer vs. other cancer types and normals: A Þrst rough classi-
Þcation suggested by clustering of the data in Perou et al. ([12]). Tested
using n+ = 47 and n− = 38 training cases, and 51 test cases.

Group 2 Luminal A vs. Luminal B&C: an important distinction that was linked
to survival rate in Perou et al. ([12]). Tested using n+ = 35 and n− = 15
training cases, and 21 test cases.

Group 3 Normal vs. Erb & Basal cancer types. Tested using n+ = 13 and n− = 25
training cases, and 30 test cases.

Group 4 Erb vs. Basal cancer types. Tested using n+ = 11 and n− = 14 training
cases, and 21 test cases.

The overall performance of the 3 classiÞcation methods considered in this
paper, over the three groups of problems, is summarized in the graphical display
of Figure 9. The color of the bars indicate the classiÞcation method, and the
heights show the proportion of test cases that were correctly classiÞed.
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Figure 9: Graphical summary of correct classiÞcation rates for gene

expression data.

All 3 classiÞcation methods give overall reasonable performance. For groups
1 and 4, all methods give very similar good performance. Differences appear
for the other groups, DWD being clearly superior for Group 2, but the worst
of the three methods (although not by much) for Group 3.
The overall lessons here are representative of our experience with other data

analyses. Each method seems to have situations where it works well, and others
where it is inferior. The promise of the DWD method comes from its very often
being competitive with the best of the others, and sometimes being better.

5 Open Problems
There are a number of open problems that follow from the ideas of this paper,
and the DWD method.
First there are several ways in which the DWD can be Þne tuned, and per-

haps improved. As with the SVM, an obvious candidate for careful study is the
penalty factor C. In many cases with separable data, the choice (if sufficiently
large) will be immaterial. In a tricky case, several values of C can be chosen
to compare the resulting discrimination rules, but our choice provides what we
believe to be a reasonable starting point. More thought could also be devoted
to the choice of �typical distance� suggested in the choice of scale factor in
Section 2.3. But besides different choices of C, other variations that lie within
the scope of SOCP optimization problems should be studied. For example, the
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sum of reciprocal residuals
P

i(1/ri), could be replaced by reciprocal residuals
to other powers, such as

P
i(1/ri)

p, where p is a positive integer.
Another domain of open problems is the classical statistical asymptotic

analysis: When does the DWD provide a classiÞer that is Bayes Risk con-
sistent? When are appropriate kernel embedded versions of either the SVM or
the DWD Bayes Risk consistent? What are asymptotic rates of convergence?
Yet another domain is the performance bound approach to understanding

the effectiveness of discrimination methods that has grown up in the machine
learning literature. See Cannon, Ettinger, Hush and Scovel (2002), and Howse,
Hush and Scovel (2002) for deep results, and some overview of this literature.
Finally, can meaningful connection between these rather divergent views of

performance be established?
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