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Abstract

An important problem in the use of density estimation for data analysis
is whether or not observed features, such as bumps are “really there”, as
opposed to being artifacts of the natural sampling variability. Here we
propose a solution to this problem, in the challenging two dimensional
case, using the graphical technique of Signi..cance in Scale Space. Color
and dynamic graphics form an important part of the visualization method.

1 Introduction

Kernel density estimation is a smoothing method which shows structure in data
that can be hard to ..nd by other methods. See, for example, Scott (1992),
Wand and Jones (1995) and Bowman and Azzalini (1997) for much more about
this ..eld, including many interesting examples. While the method is good at
..nding structure, it can also miss important structure via oversmoothing, or
else ..nd unimportant spurious structure via undersmoothing.

One approach to this problem is via data based bandwidth selection, sur-
veyed in Jones, Marron and Sheather (1996). While good methods have been
successful at ..nding bandwidths which result in *“good estimates”, they are
tuned for something dicerent than understanding which features are signi..cant.
Furthermore, the best methods currently available seem to be inherently one-
dimensional.



Scale space ideas were used by Chaudhuri and Marron (1999) to motivate a
much dizerent approach, called SiZer, to ..nding signi..cant structure in data.
See Marron and Chaudhuri (1998a,b) and Kim and Marron (1999) for further
examples and discussion. Scale space is a concept from computer vision, see
Lindeberg (1994). While scale space is simply a family of Gaussian kernel
smooths indexed by the bandwidth, it comes with two viewpoints that are not
common in the statistical literature. The ..rst view is that one should not try
to focus on a single bandwidth, because there is usually important information
available at several amounts of smoothing, i.e. at several dicerent levels of
resolution of the data. The second is that the focus of statistical inference
should be shifted from ““the true underlying function”, to “the true underlying
function viewed at the given level of resolution”, i.e. to the underlying function
convolved with the kernel. The last idea is very important, because it avoids
the di¢cult problem of handling bias. See Section 6.2 of Chaudhuri and Marron
(1999) for further discussion.

SiZer combines scale space ideas with a new type of visualization, to give a
useful tool for ..nding structure in univariate data sets. The method works for
both univariate regression and univariate density estimation. However, SiZer
is inherently one dimensional for two reasons. One is the type of visualization
used. The other is that it is based on whether the derivative is increasing or
decreasing, which is not a useful concept in more than one dimension.

These problems were solved in the two dimensional setting of image analysis,
by Godtliebsen, Marron and Chaudhuri (1999), where the *“Signi..cance in Scale
Space” method was developed. In this paper we do a parallel development of the
Signi..cance in Scale Space concept in the dicerent setting of bivariate density
estimation.

The ..rst challenge is to visualize the family of smooths. In one dimension,
this can be done by simply overlaying the dicerent smooths, see Marron and
Chung (1997) for suggestions about this. In two dimensions we give the same
insight about the family of smooths, i.e. the scale space, by considering a
movie of smooths (with time indexing the log of the bandwidth). The second
challenge is the display of which features are important. This is addressed via
added visual cues which indicate statistical signi..cance, of the local gradient,
and/or of the local curvature.

This paper addresses these problems through the proposal of a new method-
ology called Signi..cance in Scale Space (S®). The main ideas are ..rst developed
in the context of a bivariate density estimation example in Section 2. Section
3 gives the details of the development of S® for density estimation. Section 4
gives more applications to real data sets. Details of calculations are given in
an appendix in Section 5.

There are many variations and extensions of this work that are possible. For
example, the Gaussian kernel estimates that form the basis of standard scale
space could be replaced by a number of other types of density smoothers, e.g.
those based on splines or wavelets. Current ideas in the wavelet ..eld may be
currently closest. In particular, the “multiresolution” viewpoint that underlies
wavelet analysis can be viewed as a variation of the scale space idea. A very



challenging extension will be to more than two dimensions. The statistical
inference part of S® extends in a straightforward way, but the visualization will
require some creative ideas. Scott (1992) gives good discussion of a number of
interesting possibilities in this direction.

2 A First Example

As an illustrative example, we consider the Melbourne temperature data ana-
lyzed by Hyndman, Bashtannyk and Grunwald (1996). The raw data are max-
imum daily temperatures during the period 1981-1990 measured at Melbourne,
Australia, with leap days omitted. Here we study how well yesterday’s maxi-
mum temperature predicts today’s maximum temperature. Figure 1 shows the
standard lagged scatterplot, of NV = 3649 observations, and a carefully chosen
kernel smooth, where the height of the density estimation surface is represented
by gray levels. There is a large white blob representing highest contours of
the smooth. This blob tends to lie on the line y = z (i.e. along the 45 degree
line, but be careful to not confuse angular degrees here with temperature in
the following), and also has a thinner extension into the higher temperatures,
which is consistent with the idea that the best predictor of today’s maximum
is yesterday’s maximum. An interesting feature which was the focus of the
analysis of Hyndman, Bashtannyk and Grunwald (1996) is the thin horizontal
arm projecting out at a constant today’s maximum of around 20 degrees (Cel-
sius), i.e. along the line y = 20. They presented graphics which highlight this
feature, and also explained it in terms of local meteorological knowledge, which
suggested that times of high temperatures are frequently followed by a 20 degree
maximum.

The rotationally symmetric Gaussian kernel function is used in all density
estimates in this paper. Figure 1b shows only a single bandwidth » = 5.
But it is quite useful to look at the full scale space, i.e. a broad range of
bandwidths. Such ..gures are not shown in this paper to save space. However,
it is conveniently and insightfully done by viewing a movie. This movie, together
with movie versions of most other ..gures in this paper, can be easily accessed
at the WWW address:

http://www.stat._unc.edu/faculty/marron/Movies/SSS_kde_Index._html

These movies can be very easily played on a PC e.g. by downloading, and then
clicking on them. Gray level images are shown in most ..gures in this paper
(and their accompanying movies). Most of them have the gray scale adjusted
for maximal contrast, meaning the color black (white) is used for the minimum
(maximum respectively) of the surface being represented (and this is done frame
by frame in the movies). Figure 1b (and its movie version) is the only exception.
Because of sparsity in gray scales, and the very high density of data in the lower
left, the features of interest are invisible using the conventional full contrast
gray scale. To see these features, the gray scale is modi..ed to include only the



lower 20% of the density, i.e. the color white is used for all regions where the
density is higher than 20% of its maximum. See Figure 5 of Hyndman (1996)
for some closely related graphics.

Figure 1b
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Figure 1: Scatterplot (a) and bandwidth » = 5, spherically sym-
metric Gaussian kernel density estimate (b) for Melbourne tempera-
ture data. The x axis is yesterday’s maximum temperature (Celsius),
and the y axis is today’s maximum temperature (Celsius).

Signi..cance in Scale Space (S®) methodology is useful for the part of this
type of analysis where the statistician wonders if observed features, such as the
arms along the lines y = x and y = 20 in Figure 1b, are “really there”. If
so, they are worth a deeper search for causes, of the type that was done by
Hyndman, Bashtannyk and Grunwald (1996). But if not, such exort could be
wasted. Careful development is done in Section 3, but ..rst the usefulness of
S3 is demonstrated.

Figure 2 shows two versions of S3 applied to the Melbourne temperature
data, at the scale h = 5, as considered in Figure 1b. They each start with
a gray level display of the bivariate density estimate, and then add symbols
to show signi..cant features. Figure 2a considers an estimate of the gradient
at a rectangular grid of locations. If the gradient is signi..cantly dicerent
from 0, then an arrow is drawn in the gradient direction. Locations with
no arrow, have “more noise than signal” (being in regions with very low data
density, as seen in the scatterplot in Figure 1a), and are thus not highlighted.
The texture of the arrows clearly reveals the dominant ridge along the line
y = x. It also shows that the horizontal ridge, along the line y = 20 (where
today’s maximum temperature is about 20) is also “statistically signi..cant”.
This would justify the search for explanations that was done by Hyndman,
Bashtannyk and Grunwald (1996). Another interesting feature is a rather faint
suggestion of a vertical ridge along the line x = 20 (where yesterday’s maximum



temperatures were about 20 degrees). This was not reported by Hyndman,
Bashtannyk and Grunwald (1996), because their investigation was conditional
on y given z, versus the full bivariate analysis done by S2. As for conventional
smoothing, as shown in Figure 1b, and its companion movie version, it is useful
to look at the full scale space, i.e. at many dicerent smooths. For example,
the very faint vertical ridge along x = 20 is seen more clearly using a smaller
bandwidth in Figure 4. Again a movie version of this can be found at the above
web site.

Another version of S? replaces the notion of “signi..cant gradient”, by “sig-
ni..cant curvature”. Now second partial derivatives are considered, and summa-
rized by eigenvalues of the Hessian matrix, which give a rotation invariant notion
of curvature. Colored dots represent statistical signi..cance of the eigenvalues
in various ways depending on the type of signi..cant curvature. Classi..cation
of signi..cant curvature types is done via the eigenvalues of the Hessian matrix,
denoted as A_ < A;. Colors are assigned to pixel locations as:

Feature Color Ao At
hole Yellow | sig. >0 | sig. >0
long valley | Orange | not sig. | sig. >0
saddle point Red sig. <0 | sig. >0
long ridge Purple | sig. <0 | not sig.
peak Blue | sig. <0 | sig. <0

Table 1: Dot color assignments of signi..cant curvature types.

Thus dark blue dots are used where both eigenvalues are signi..cantly neg-
ative, e.g. near local maxima of the density estimation surface, shown here as
the bright white region. There are two clusters of dark blue dots, which may
represent dicerent seasons. Light purple is used for one signi..cantly negative
eigenvalue, with the other not signi..cant, as along a thin ridge. This coloring
appears along the line y = « for higher temperatures, as expected. It also
appears along the ridge found by Hyndman, Bashtannyk and Grunwald (1996),
along the line y = 20, which is another way of seeing that this feature of the
data is “really there”, and worth careful investigation. The color red is used
where one eigenvalue is signi..cantly positive, and the other is signi..cantly neg-
ative, as at a saddle point. This appears along the line y = = between the two
purple regions, because the density estimation surface bends upwards to get to
the bright peak. At these points, the negative eigenvalue shows the downwards
curve of the ridge in one direction, while the positive eigenvalue retects the
general upwards curve of the ridge towards the bright peak. There is a simi-
lar red region for the ridge along the line x = 20, again suggesting there may
be a vertical ridge. Orange dots are used where one eigenvalue is signi..cantly
positive, and the other is not signi..cant, as in a long valley. These appear
where the density estimation surface curves up from the horizontal. Again the
full scale space is informative, and we strongly recommend viewing the movie
version, available at the above web address.



Figure 2b
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Figure 2: Signi..cant gradient (a) and curvature (b) versions of
Signi..cance in Scale Space for the h = 5 kernel density estimate,
for the lagged Melbourne maximum temperature data.

Figure 2 shows that the gradient and curvature versions of S ..nd dicerent
types of features. This has motivated the development of a hybrid version,
which combines the two visual paradigms. This approach ..rst ..nds signi..cant
arrows, as in Figure 2a. Then where curvature is also signi..cant, the arrow is
recolored with the curvature color (left green where curvature is not signi..cant).
And where curvature is signi..cant, but gradient is not, a colored dot is used
(this case didn’t appear for these data at this scale, but see Figure 5a for such
dots). Such an S? plot is shown in Figure 3a. This is not easy to look at the
..rst time, as there may be considerable problems with information overload.
But after building some experience, we ..nd this preferable to either approach
taken separately. In particular this combines into a single plot the lessons about
the features noted above. Again the movie version on the above web site is
recommended.

A weakness of these versions of S3 is that they are not rotation invariant.
In particular, the arrows and dots are arranged along rectangular grid points.
This results in certain “raster ecects”, e.g. the ridge along the line y = = has
a dizerent texture in Figure 2a, than the ridges along the lines y = 20 and
x = 20. This problem is well understood in the area of visualization of vector
..elds in computer graphics, see Helman and Hesselink (1989) for an access to
this literature. Figure 3b shows an adaptation of the “streamline” idea to the
context of S3. Each line starts at a randomly chosen pixel with a signi..cant



gradient (i.e. a green arrow as in Figure 2a). The line is step-wise extended in
both gradient directions, until the gradient is no longer signi..cant. Intuitively
this corresponds to moving in the directions of steepest ascent and descent.
Note that this visualization clearly highlights ridges, since the streamlines ..rst
march up the slope of the ridge, in a direction that is quite dicerent from the
ridge direction. Then when they get to the crest, they turn and follow the ridge
direction. The previously discussed ridges along the lines y = z and y = 20 are
clearly shown in this way. Also the suggestion of a ridge along the line x = 20
is perhaps most marked with this version of S3. Again it is well worth studying
the movie version with more scales, available from the above location.

Figure 3b
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Figure 3: Combined gradient and curvature (a) and streamline (b)
versions of Signi..cance in Scale Space for the h = 5 kernel density
estimate, for the lagged Melbourne maximum temperature data.

Readers who have been actually viewing the movies as suggested above,
have probably noticed why it is useful to study more than one scale. This
is that the vertical auxiliary ridge, i.e. along the line x = 20, which was not
mentioned by Hyndman, Bashtannyk and Grunwald (1996), shows up as being
clearly statistically signi..cant at scales closer to h = 3.3, as shown in Figure 4.



Figure 4a Figure 4b

Figure 4: Combined gradient and curvature (a) and streamline (b)
versions of Signi..cance in Scale Space for the i = 3.3 kernel density
estimate, for the lagged Melbourne maximum temperature data.

The scale, i.e. bandwidth, in Figure 4 has been carefully chosen from the full
scale space, because it now highlights the statistical signi..cance of the vertical
ridge in the data along the line z = 20. This appears in the left part as the
light purple vertical ridge. It appears in the right part as the contuence of
streamlines. Hence, this feature is also worth deeper investigation. L. E.
Chambers, from the Australian Bureau of Meteorology Research Centre, has
con..rmed that frequent occurrence of a maximum temperature of 20 degrees,
followed by a higher temperature can be explained as temperatures driven by
sea breezes on one day, followed by Northerly winds bringing high temperatures
the next day.

Figures 2 - 4 illustrate four versions of S2, so it is natural to wonder which
version is “preferable”. Based on our experience, we have a slight preference
for ..rst using the streamlines, as in Figure 3b and 4b. A close personal second
choice is the arrows and dots version shown in Figures 3a and 3b. We typically
look at both for a new data set. It is hard to choose between these, because it
is not clear how to balance the appealing visual appearance of the streamlines,
with the fact that curvature information allows the ..nding of features that may
not be visible from gradient information alone, as shown in Section 4. While we
personally don’t use them, beginners report that they prefer the arrows alone
(Figure 2a) and the dots alone (Figure 2b) versions, because combining them
results in information overload, especially in the important movie version.



We have found that beginners to the S® method ..nd that combined arrows
and dots present too much information at once. While this ecect appears to
mitigate with experience (we personally prefer seeing the added information),
it seems important to ..rst start with the simpler versions. Hence our Matlab
software uses a default of arrows only, as shown in Figure 2b. Other versions
are easily employed through changing parameters.

An issue that is related to S? is interactive local bandwidth selection (where
dicerent amounts of smoothing are used in dicerent locations), see Eick and
Wills (1995) and Marron and Udina (1999) for some implementations of this in
one dimension. This could be combined with S in several ways. One possi-
bility would be to add our graphical devices to such an estimate. Another is to
use S3 as an aid in the challenging problem of ..nding a “good” local bandwidth
estimate, see Section 5.5 of Chaudhuri and Marron (1999) for discussion of this
in the one dimensional case. In our opinion, the needs of exploratory data
analysis are best served by looking through a range of scales using a constant
bandwidth at each, as done by S3. Local bandwidth methods are much better
suited for presentation purposes, after one knows features of the data are inter-
esting and also “really there”. E.g. for the Melbourne temperature data, the
vertical and horizontal arms shown in Figures 3 and 4 could be displayed in a
single, carefully chosen, varying bandwidth plot.

3 Development of the Methods

As seen in Figure 1b, the structure in a bivariate data set {( Xy, Yx) : k=1,..., N}
may be understood from a kernel density estimate. This is de..ned as

N

Fu(2,y) = NS Ky (2= Xy = Vi),
k=1

where K is the kernel function, and & is the bandwidth, i.e. window width. See,
for example Scott (1992), Wand and Jones (1995) and Bowman and Azzalini
(1997), for discussion of many properties and variations of this estimator. In
this paper, K is taken to be a spherically symmetric Gaussian density, and
h is the common marginal standard deviation, for reasons given in Lindeberg
(1994), Chaudhuri and Marron (1999) and Chaudhuri and Marron (2000). In
some applications, it can be appropriate to use dicerent scales on the dicerent
axes. Because some of our graphics, e.g. the dots in Figure 2b, are aspect
ratio dependent, we always work with a scale where individual pixel regions are
square. This type of scale can be achieved by a linear change of variable, and
is assumed in all parts of this paper. Thus the spherically symmetric Gaussian
kernel has the product form



where ¢, denotes the rescaling

where ¢ is the standard Gaussian density.

Rapid calculation of f, (z,y), and also its derivatives as needed for S3, can
be done by ..rst binning the data to an equally spaced grid. Details of binning
are given in Section 3.1. This allows fast computation by simple convolution,
as described in Section 3.2. The distribution theory needed for the statistical
inference of S3 is described in Section 3.3. Some philosophical points, including
bias issues, are discussed in Section 3.4.

Matlab software for both the image and density estimation version of S3,
with explanation as to how to use them, is also available at the above web site.
A dizerence between the image and density estimation versions of S2 is that
we found an “often useful” range of bandwidths (after scales have been reset so
that one unit means one pixel) for the “full scale space” for images is h € [1, 8],
while h € [2,16] was generally more appropriate for density estimation (since
more smoothing is often required before signi..cant features appear). These
bandwidth ranges are thus the defaults in the software.

3.1 Binning

There are several methods for binning data to an equally spaced rectangular
grid, of the form

{(xs,y;) @i = Lg +iAs, yj =Ly, +jA,, i =0,..,n, j=0,..,m},

i.e. a rectangular lattice, where the xz; are equally spaced over [L,, L, + nA,]
and the y, are equally spaced over [L,, L, +mA,]. Here we give formulas for
“simple binning” and “linear binning”. See Appendix D of Wand and Jones
(1995) for much more discussion about binning, and access to the literature.

Simple binning, also called “nearest neighbor binning”, is best viewed as
moving each data point to the grid point that is its nearest neighbor. Then
the mapped points are counted to give a matrix C' of bin counts, whose ¢, j-th
entry is

¢,; = # (data points assigned to bin 4, j) .

The idea behind linear binning is to split the unit mass of each data point,
among the grid points that are its four nearest neighbors. This is done in a
way that properly refects distance to each grid point. The details are straight-
forward, and can be found in Section D of Wand and Jones (1995).

Some account needs to be made for data which lie outside the bivariate
interval [L,, L, + nA;|x[L,, L, + mA,]. Two approaches may be appropriate,
depending on the context. One is to simply ignore points that are outside, i.e.
not count them in the binning process. The other is to move them so that they
lie at the nearest boundary point, and then proceed with binning. Since either
can be reasonable, both are allowed by our software.
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3.2 Estimation

In addition to computational speed, another advantage of binning is that then
density estimation can be done with nearly the same algorithms as for non-

parametric regression

(with an “equally spaced design). This happens via

replacement of the matrix of regression data values, with the matrix of bin
counts, denoted as C above. In particular, the density is estimated by the

matrix

fo=N"1 (C*I?h>,

where x denotes bivariate discrete convolution, and where f(h is a matrix of
evaluations of the kernel function K. This should be viewed as an approxima-
tion of f,. Estimates of partial derivatives have a similar simple convolution

form,

Dfy = N1 [C * (D}?hﬂ , (1)

. . . . . . 2
where D denotes various partial derivative operators, including 2, 2, -2

92
Ox O

2
and 2.

a_yl Wl

This formulation allows nearly direct application of some aspects of the im-

age analysis version of S3, as developed in Godtliebsen, Marron, and Chaudhuri
(1999). A very important dicerence is that estimation of the local variance of
the partial derivative estimates is dicerent (because the c;; are counts). The
basis for our variance estimate is the fact that fh (z,y) is a simple average of
i.i.d. random variables. Thus a sensible estimate is the usual sample variance,

var [ Dfy (xy)] =

N
Fa\rlN‘lzDKh (x— Xp,y—Y2)| = )
k=1

N_1$2{DK}L (r—Xg,y—Yy):kE=1,..,.N} =

N 2
R ]

=1

N 2
ﬁ {N_IZ(DK;L (r — Xi,y — Yk.))2 - (th (x,y)) }

k=1

The argument of the square of the second term inside the braces is approximated
by Df; as at (1) above. The ..rst term inside the braces needs the new binned

approximation

v fo-[om)]).

The resulting approximated version of the variance estimate (2) is then used
directly as the local variance in the formulas for the image analysis version of

S8,
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Another important dicerence between density estimation and image analysis
is that the former often has large regions with no data, e.g. the upper left and
the lower right of the scatterplot shown in Figure 1a. Hence data sparsity issues
need much more attention. The approach taken is the same as in Chaudhuri
and Marron (1999) via the concept of “Escective Sample Size”. The idea is to
take a “kernel weighted count” of the number of points in each window. This
motivates the de..nition

ESS. . — Zg:l Kn (i — Xp, 5 — Yi) _ Cx I?h
" K3(0,0) K (0,0)°

©)

Using the standard Binomial rule of thumb, we say that the Gaussian approx-
imation on which S is based is inadequate when “np < 5”.  Thus in the
present case, we call the data “too sparse for inference” at the location i, j
when ESS; ; < 5. In the imaging version of S such points were marked with
green circles. This was visually ecective, because there were either no such
locations, or else there were some only in strips near the boundary, or else the
data was sparse everywhere. But this approach was not ecective for density es-
timation, because the much larger regions of data sparsity yielded distractingly
large regions of green circles. A better approach was to plot no symbols (i.e.
no arrows and no circles of the type in Figure 2) in regions of data sparsity, as
this gave less distraction.

3.3 Distributions and Signi...cance

The statistical inference of S? is based on the fact that derivatives of smooths
satisfy central limit theorems, i.e. have limiting Gaussian distributions.

An important issue is multiple comparisons, since there are essentially a large
number of simultaneous hypothesis tests being performed. This is addressed
via the “number of independent blocks™” approach developed in Section 2.4 of
Godtliebsen, Marron and Chaudhuri (1999). The basis is the average Erective
Sample Size

755 = (303 B8S, | /),

i=1 j=1

for ESS as de..ned at (3). Since there are nm independent data points, the
smoothing process can be viewed as “averaging in groups of size ESS”. Thus
the number of independent averages is approximately

nm

(£55)

As noted in Section 3 of Chaudhuri and Marron (1999), ¢ has a strong rela-
tionship to the “exective degrees of freedom” of Hastie and Tibshirani (1990).
Now given a desired overall signi..cance level « (e.g. « = 0.05 is used in most

12



examples here), the level o’ for ¢ individual con..dence intervals, that will result
in simultaneous level o coverage, comes from solving

a = P{k-th C.I. notcovering, k =1,...,¢} =
= 1-P{C. Lcovers}=1—(1—a")".
This results in

o =1—(1—a)"".

The statistical underpinning of the arrows shown in Figure 2a is a hypothesis
test about the statistical signi..cance of the magnitude of the gradient. At a
given location (x;,y;) (which will be suppressed for simplicity of notation), the
gradient of the underlying density f is

1/2

G(f) = [(FP + (1]
where f, = a%f and f, = a%f . The corresponding estimate of the gradient is
1/2

Gl = | (Foe) ()]

where f;, . and f,, are special cases of (1).

The gradient version of S? fags pixels as signi..cant when @h(f) is “higher
than the noise level”, in the sense that it rejects a hypothesis of the form

Hy: G(f) =0. (4)

The null distribution of this test is based on the bivariate Gaussian distribution

b )= ((5) (A %))
Jh, ~ N , , 5
( Foo 0 )\t o ©
which is exact if the noise terms ¢; ; have a Gaussian distribution, or follows by

an appropriate Central Limit Theorem otherwise. Approximate values for o2,
o2, and o2 are derived in Section 5.1, where it is also seen that o2, ~ 0. Thus

2 2

fhym fhyy 2
B} 5 ™~ X2

01 02

so the null hypothesis (4) is rejected for those pixels where

fro 7
AQI =+ /\Qy > qxg (O/),
01 02

the appropriate quantile of the 3 distribution, using the estimates 8% and 8?
which are special cases of (2).
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Depending on the size of the desired binning grid (we have found 64 x 64
to be generally reasonable as a trade oo between resolution and computation
time), the arrows drawn by S® may be too short for good visual impression.
To address this, we allow *“pooling across pixels” by combining them into 2 x 2
blocks. On each block, the 4 hypothesis tests are performed, and an arrow
representing the coordinate-wise average direction, whose length is proportional
to the number of signi..cant results, is drawn.

The statistical underpinning of the dots shown in Figure 2b are based on a
hypothesis test about the eigenvalues of the Hessian matrix. In particular, at
a given location (x;,y;), (which will again be suppressed for simplicity of nota-
tion), the local curvature properties of the underlying density f are described
by the Hessian matrix,

H(f) = ( For fs )

2
where f,, = (a%)Qf s oy = (a%) f,and f., = a%a%f- These second order

partial derivatives are estimated by f1, »., fn.«y @nd f3 4y, Which are special cases
of (1). The eigenvalue representation of the Hessian matrix gives a “coordinate
free” representation of the local curvature, and in particular the eigenvalues
are a simple summary of the types and magnitudes of local curvature. In two
dimensions, the eigenvalue problem has the explicit solution

Ax = [(fmv +fyy) + \/(fmv - fyy)2 +4 IQy /2- (6)

The curvature version of S fags pixels as signi..cant when there is “some
signi..cant curvature”, in the sense that at least one of A\, and A_ “emerges
from the noise level”. This can be quanti..ed through the parameter T =
max {|A\+], |A-|}, and thus is formulated as the null hypothesis

Hy:T =0. (7

An alternate choice for the parameter 7" that we considered was the Euclidean

distance to the origin, \/)\i + A2, but this was less suitable because the shape
of the null region did not allow easy separation into types of curvature, as given

~

in Table 1. The natural statistic for the test of (7) is T = max{‘L‘ , ‘)\_‘}

where the eigenvalues of the estimated Hessian matrix come from replacing the
second derivatives in (6) with the estimated versions.

The null distribution of this test is based on the trivariate Gaussian distri-
bution

,]ih,mm 0 0';1 0';2 0'53

fh,my ~N 0 ) 012 022 033 ) €))
~ 2 2 2

Fhoyy 0 013 023 033
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which follows by an appropriate Central Limit Theorem. Approximate values
for o3,, 0%, 015, 035, 035 and o3, are derived in Section 5.2, where it is seen that

2 .
oly ~ 033 = 0 and o}, ~ 033 = 3073 ~ 303, ~ 72Z5. Thus an approximate
distribution for T is based on the trivariate normal distribution

Fwe/Gc 0 30 1
fray/Gc | ~N 0,010 , 9
fhyy/Pc 0 1 0 3

where the combined estimate 7 ¢ is also developed in Section 5.2. The distribu-
tion of T does not seem to have a simple closed form, but it can be developed by
simulation. Details are given in the Appendix, Section 5.3. Given a nominal
level o/, the null hypothesis (7) is rejected for a given pixel when T' > g, the
simulated o’ -th upper quantile of this distribution.

As above, the probability o’ is chosen to make the inference simultaneous
across pixel values. The same development shows that for a simultaneous level
of q,usea’ =1—(1— a)l/g.

For pixels where the hypothesis (7) is rejected, a colored dot is used, as in
Table 1. The corresponding regions in A - A_ space are easily understood by
an x - y plot, where the axes are A, and A\_. The boundaries of the regions
are the vertical and horizontal lines at +q5.

The same problem with small pixel size that appeared for the arrow version
of S3 happens here also for larger images. The problem again can be addressed
by “combining curvature information on 2 x 2 blocks”, although the combination
is more complicated, because of the dizcerent colors involved. Details are given
in the Appendix Section 5.4.

The streamline version of S uses signi..cant pixels as calculated for the
arrow approach (but no combining into 2 x 2 blocks). Details are given in
Section 3.2 of Godtliebsen, Marron and Chaudhuri (1999). An unfortunate
feature of the movie version is that the streamlines are computed frame by
frame. This means that dicerent random locations are used in di=erent frames,
which results in substantial “jitter” in the movies. The development of a version
of S$3 that computes streamlines properly through the whole scale space (i.e. the
same streamline is used at all scales for which it appears) is an interesting open
problem.

3.4 Interpretation and Bias Issues

A point where scale space ideas are quite dicerent from traditional statistical
density estimation is in the treatment of bias.

Classical statistical approaches begin with the assumption of a *“true under-
lying density”, which it is desired to estimate. From this viewpoint, most mea-
sures of error have two components. The ..rst is a “variance” type term, which
quanti..es sampling variability. The second is a “bias” term, which quanti...es
the systematic distortion caused by the smoothing process. For kernel density
estimation, this distortion is simply the dicerence between the true curve and its
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convolution with the kernel function. As illustrated in Section 6.2 of Chaudhuri
and Marron (1999), statistical inference (e.g. con..dence intervals / bands) in
this context is very challenging. Several approaches are discussed there, which
are typically unsatisfactory for real data analysis, essentially because the bias
is “unknowable”, at least to the degree needed for sound statistical inference.

The scale space viewpoint provides a way around this impasse, thus leading
to useful statistical inference. The key concept is to change the goal of the
inference from the *“true underlying curve” to its scale space version, which is
the convolution of the true curve with the kernel function (thus resulting in a
scale family of underlying target functions). From this viewpoint, the “target
of estimation” is now that part of the true underlying curve that is available for
statistical inference, at the given level of resolution (i.e. at that bandwidth).
This can be estimated in an unbiased way, which thus makes the inference
straightforward, e.g. as done by S3.

There are many other possibilities for putting this idea to work for statistical
inference, that have not been explored yet.

4 More Examples

Additional real data examples are presented in this section, which show addi-
tional aspects of S3.

Figure 5 shows S applied to the Old Faithful Geyser data, from Table B6
of Scott (1992), who references Weisberg (1985). See Azzalini and Bowman
(1990) and Hyndman (1996) for much more about these data. The y coordinate
is the time of duration of one eruption of the geyser, and the x coordinate is
the duration of the previous eruption. The bright spots suggest three modes in
this bivariate distribution. The gradient & curvature version of S3, in Figure
5a, shows that all three modes are statistically signi..cant. In particular, each
mode has at least some light purple dots on the top, and there are dark blue
dots on the largest mode (upper right). Dark blue dots also show up for the
upper left mode at some dicerent scales, see the movie version at the above
location. Perhaps more conclusive evidence in favor of the three modes is the
occurrence of red saddle points at the ridges connecting the modes.
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Figure 5a Figure 5b

Figure 5: Combined gradient and curvature (a) and streamline (b)
versions of Signi..cance in Scale Space for the h = 8 kernel density
estimate, for the Old Faithful Geyser data.

The streamline version of S in Figure 5b, is less conclusive about the modal-
ity, since it does not clearly separate the modes from ridges. This is because
the streamlines only use gradient information, while the important locations in
Figure 5a had colored dots, indicating that the curvature, but not the gradient,
was signi..cant. Of course it is well worth studying other scales. The movie
version, available at the above location, shows at somewhat smaller bandwidths,
that the upper left mode can be distinguished by streamlines alone, but not the
lower right mode. The situation where the gradient - curvature version of S3
found *“vague structure” more often than the streamline version was fairly typ-
ical of our experience with other examples in density estimation (but there are
exceptions, as shown in Figures 3 and 4). This contrasts with our experience
for images, as reported in Godtliebsen, Marron and Chaudhuri (1999).

As noted in Azzalini and Bowman (1990), the three modes in the Geyser data
correspond to two either “long” or “short” eruptions (with little in between),
and a short eruption never follows a short eruption, and there is a physical
explanation of this.

Figure 6 shows the performance of S? on the aircraft data discussed in Sec-
tion 1.3 of Bowman and Azzalini (1997). The original data are 6 variables
retecting features of aircraft, that were summarized by principal component
analysis. The z axis is the ..rst principal component, which turned out to
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represent those variables refecting “size”. The y axis is the second princi-
pal component, which represents “speed, adjusted for size”. The bright spot
at the lower left shows that most aircraft are neither large nor fast. There
is a high density “arm” extending in the direction of medium size but quite
fast aircraft, and also in the direction of very large, and somewhat slower air-
craft. Bowman and Azzalini (1997) suggest that the data are trimodal (with
the arms as modes), but S3 does not quite ..nd the three modes. This could
well be because S? is an “omnibus” type of hypothesis test, which attempts to
be “powerful in all directions”, which entails some trade-oa in power in speci..c
directions. Methods which might provide stronger evidence of the trimodality
would be based on formal “mode tests”, although the literature for that mostly
focuses on the one dimensional case.

Figure 6a Figure 6b

Figure 6: Combined gradient and curvature versions of Signi..cance
in Scale Space for the h = 7 kernel density estimate, at the level of
signi..cance « = 0.01 (a) and «a = 0.2 (b), for the aircraft data.

The scale in both parts of Figure 6 is h = 7, chosen by studying the movie
version (available from the above location) and trying to maximize the im-
pression of trimodality. Figure 6a shows S3 using the low signi..cance level of
a = 0.01, while Figure 6b shows the much higher level of o« = 0.20. As expected,
the less stringent hypothesis tests underlying Figure 6b result in more features
being Fagged as signi..cant, although still not enough to conclude trimodality.

An aspect of Figure 6 that is not representative of our experience with
varying « is that there are quite a few more signi..cant features in Figure 6b. For
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other data sets, there tends to be less dicerence, even for such a large range of «
values. The reason this happens here, is because for many locations, the features
just happen to be near the boundary between signi..cant and insigni..cant.

5 Appendix
Detailed calculations for the methods developed in Section 3.3 are given here.

5.1 Gradient

In this section estimates are derived for the variance parameters of the gradient
normal distribution (5). From (2), using the derivative notation,

wor (Funteony)

n m m
= COvU E E C’L'/,j/ Khv’f (:E,L —_ jE,L'/, y] —_ y]/) y E E C’L'//,j”Kh,:E (:E,L —_ jE,L'//, y] —_ yj//)

i'=1j'=1 i"=1j"=1

= z z z z Ko (s — xi,y; — yjr) Knoo (23 — 20,y — yjor ) cov (cr o, cimr jir)

This is the basis for the proposed estimates

Q% = (Kh,m 'Kh,m) *QQ; (10)

Q% = (Khyy'Khyy)*Qz,

where - denotes element by element matrix multiplication, and where 5* is the
matrix whose entries are the local variance estimates from (2).

To check that the covariance o%, is negligible, ..rst by a similar calculation
to the above

cov (fh,m(xiyyj)a fh,y(xiayj)> =3 Kna (@i — 2,y — yi) Kn (w0 — 2, y; — yj0) 07 .

i'=1j'=1

By Riemann summation (with step length 1), approximating
o2 =~ o //KhI (z,y) dedy = OQ/K;L (:c)Qd:c/Kh (y)* dy,
7y~ 0 [[ K o) iy (o) dody

- o / K, (2) K, (x) de / K}, (y) K (y) dy = 0,
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where the integral symbols are understood to mean de...nite integration over the
range (—oo,00). But using Corollary 4.5 of Aldershof, et. al. (1995), for the
Gaussian kernel,

1
2 —_
/Kh(x) = sy
[ K@ K@ = o (1)
1
2
[ = g
from which it follows that
1
0% ~ o2 e

and that 0%, ~ 0.

5.2 Curvature

In this section approximations are derived for the variance parameters of the
curvature normal distribution (8), and the form (9) is justi..ed. These calcula-
tions are similar to those of Section 5.1, so fewer steps are included here. First,
using independence,

2
var (fhmm Tis Yy > = ZZKh,mm (xifxi/ayjfy]) 12]7
i'=1j/=1
2
var (fh oy (@i, Y; ) = Y Knay (@i — 2,y —yp) by,
ir=1j'=1
var (fhyy TiyYj > = Zthyy( — Ty Yy — yj/)zo—?,ja
ir=1j'=1
cov (fhmm(xuy] fhmy TiyYj > = ZZKh,mm (xi*xi/ay] Yj )Khmy( —Tis Y —
i=1j'=1
cov (fhmm(xmy] fhyy Tis Yy > = ZZKh,mm (xifxi/ay] Y5 )Khyy( — Xy Y5 —
i=1j/=1
cov (fh,my(xiyyj)afh,yy(xiayj)> = Z Z Khay (@ — @i, yj — Yyr) Knyy (2 — 200,y —
i=1j'=1

LS

Qil = (Kh,mm 'Kh,mm) *Q ’
Q%Q = (Kh zy Khymy) * QQ,
§§3 - (Khyyy 'Khyyy) *3°,
Q%:ﬂ = (Kh,mm ! Kh,yy) * §27

yj) o

yj/) o

yj) o



where - denotes element by element matrix multiplication.

Similar methods to the above are used to check that the covariances o7,
and o3, are negligible, and to understand the variance structure in (9) . In
particular,

0%1 ~ o2 // Kp 2o (:c,y)2 drdy = o /K}’L’ (:c)2 d:c/Kh (y)2 dy,
o~ o [[ Knwy 00 dody =0 [ K, @) e [ K5 )
7y = 0 [[ Ky ) dody = [ 100 @P s [ K7 )" an

Q

Q

0%2 ~ 02/ Kh,mm(xyy)Khymy(xyy)dxdy
= / K! (2) K} (z) dz / K, () K} () dy,
2~ o / Koo (2,9) Knyy (@, ) dedy

_ / K} (2) K, (2) de / K (y) K}, (y) dy,

Q

o2~ o / Koy (2,9) Ky (2, y) dedy

- / K, () K, (z) de / K7 (4) K () dy.

Some of these integrals are evaluated above, and the others are

3
1" 2 _
/Kh ()" dx = Sel/2]5”
-1
1! —
/Kh (:c)Kh(:c)d:c = m,
again using Corollary 4.5 of Aldershof, et. al. (1995). This gives
9 302
o N
= 167hS’
2
2 L 7
722 % Ygpp6°
o2 N 307
37 16xhs’
0%2 ~ 0,
2
2 L 7
7187 Ygpp6’

2 ~
093 =~ 0.

The ratios in the covariance matrix of (9) show how to combine the estimates

G2, Oaq, 033 and G714 into the single variance estimate 6 (this approximation
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makes the simulated distribution in the next section case independent),

~2 G11/3 + G5y + 033/3 + 01
4
5.3 Curvature Null Distribution
Simulation values of the distribution of the eigenvalues of
,sz,mm/a—C ,]Eh,my/gC
fh,my/a'C fh,yy/aC

are based on Z;, Z, and Zs independent N (0, 1), which are transformed by
the square root of the covariance matrix in (9), and plugged into the eigenvalue
formula (6) to give

1
No = (70 + Zs) + 5\/2 (Z1 — Z3)? + 422

Simulation investigation of the 7" = max {|\}|,|\" |} distribution, showed
that it was nearly linear on the scale of ¢ vs. —logio(1 — «).  Approx-
imate quantiles of the 7% can be found by linear interpolation of the sim-
ulated quantiles given in the ASCII ..le sigcurv2.asc at the web address
http://www.unc.edu/depts/statistics/postscript/papers/marron/SSS__paper/. These
values were based on 10° pseudo realizations, and cover a range that is needed
for most S applications (depending on the desired value of ).

5.4 Curvature Combination

This section discusses how to extend the color dot visualization developed in
Section 3.3 to the case of 2 x 2 blocks of pixels as mentioned at the end of that
section. The main challenge is that a number of dicerent colors could appear
among the four pixels in a given block. Our resolution of this is based on the
signi..cances of the eight eigenvalues in the four pixels, summarized as

ny = #{X:X>Af},
n_ = #{XX<—qA?}

Then we color the dot for a given block using essentially the rules:

color feature characterization
yellow hole 6<ny—n_
orange long valley 3<ny—n_<5
red saddle point —2<n, —n_ <2 3<min{n,,n_}
purple long ridge —5<ny —n_<-3
dark blue peak ny —n_ < —6
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No dot is used when n,. and n_ do not satisfy any of these. It is possible that
a block may have three individual pixels that would have the same color under
the scheme in Table 1, but that would be dicerent from the color assigned here.
In such cases, we change the block color to be that of the three pixels, i.e. the
rule developed in this section is over-ridden by majority vote.
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