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Abstract

SiZer is a powerful method for exploratory data analysis. In this
paper, approximations to the distributions underlying the simultaneous
statistical inference are investigated, and large improvements are made in
the approximation using extreme value theory. This results in improved
size, and also in an improved global inference version of SiZer. The main
points are illustrated with real data and simulated examples.

1 Introduction
SiZer has proven to be a valuable technique for exploratory data analysis by
smoothing methods. These methods include histograms and smoother ap-
proaches to understanding the structure of one-dimensional distributions (called
the “density estimation setting” here), and scatterplot smoothers (called the “re-
gression setting” here). See for example Scott (1992), Wand and Jones (1995)
and Fan and Gijbels (1996), for an introduction to this area. As noted in these
monographs, many smoothing, i.e. estimation, schemes have been proposed.
See Marron (1996) for an overview of the many criteria that have been used to
compare different smoothing methods. Kernel based methods (definitions are
given in Section 2) are considered here for their simplicity, ease of interpretation,
and because they have been very widely studied.
Practical use of kernel methods, in both density estimation and regression,

is profoundly affected by the choice of the window width (the tuning parameter
which controls the amount of local averaging being used). When this is too
small, the resulting estimated curve strongly feels sampling variation, and is
wiggly, reflecting spurious artifacts of the sampling process. For too large a
window width, the curve estimate smooths away important underlying features.
There is a large literature on data based selection of the window width, where
one tries to estimate it from the data, see Jones, Marron and Sheather (1996a,b).
However, the problem is very challenging, there are limits on how well this
selection can be done in practice, and there has never been a consensus on what
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is “the best” method of doing this, which has appeared to slow actual use of
these methods, for example through their implementation in software packages.
Scale space ideas (see Chaudhuri and Marron (2000) for broad discussion

of these issues) have provided a practical means of avoiding the problem of
bandwidth selection. Scale space is a theoretical model for vision, that was
constructed in the computer vision community. The model is simply a family
of Gaussian window smooths, indexed by the window width. It is a model for
vision in the sense that large values of the window width correspond to standing
back and viewing a scene macroscopically, while small values correspond to a
zoomed in view. See Lindeberg (1994) and ter Haar Romeny (2001) for access
to the scale space literature. A fundamental concept of scale space, that is the
heart of SiZer, is that instead of trying to choose a single “best scale” (i.e. best
window width), one should use all of them, i.e. study the full family of smooths.
This is clear in a vision modeling context, because different levels of resolution
(i.e. smooths with different window widths) of an image contain different types
of useful information.
SiZer is a combination of the scale space idea of simultaneously considering

a family of smooths, with the statistical inference that is needed for exploratory
data analysis, in the presence of noise. In particular, SiZer addresses the
question of “which features observed in a smooth are really there?”, meaning
representing important underlying structure, not artifacts of the sampling noise.
For reasonable statistical inference using SiZer, care needs to be taken about

the multiple comparison issue. In particular, the visual display of SiZer, can be
viewed as a summary of a large number (hundreds) of hypothesis test results.
Current implementations of SiZer address this issue using the fairly crude “inde-
pendent blocks” idea, developed in Section 3 of Chaudhuri and Marron (1999).
In this paper, a much deeper distributional investigation is done, with the goal
of improving the statistical performance of SiZer.
The SiZer method, as well as potential advantages from an improved distri-

bution theory, are illustrated in Figure 1. The underlying regression function,
shown as the thick black curve in Figure 1a, is the Blocks example from Donoho
and Johnstone (1994), which appears to be rather challenging to estimate by
smoothing methods, because of the 11 sharp jumps. To make the problem even
more challenging, a high level of Gaussian noise, σ = 0.1, (much higher than
is typical in the wavelet literature) that was first used by Marron et al (1998)
is used in the generation of the n = 1024 data points shown as green dots in
Figure 1a.
The thin blue curves in Figure 1a show the scale space for this data set,

i.e. the family of smooths for a wide range of different window widths. Some
of these are seriously oversmoothed, showing strong rounding of the corners.
Some are undersmoothed showing spurious wiggles. None of these are very
good at attaining the goal of recovering the thick black curve. Wavelets, see
e.g. Donoho and Johnstone (1994), are a compelling approach to the problem
of recovering curves such as this with non-smooth features. However, for this
data, even wavelets give poor signal recovery, because the noise level is so high.
SiZer has a somewhat different goal. Instead of trying to recover the un-
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derlying black curve as well as possible, it aims instead at understanding which
of its features can be distinguished from the background noise, i.e. determining
which aspects observable in the blue curves are important underlying structure,
and which are spurious noise-driven artifacts.
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Figure 1: Conventional SiZer analysis of the Donoho - Johnstone Blocks
regression, with high noise. Shows good performance, plus a spurious feature.
True regression, data and scale space shown in Figure 1a. SiZer analysis in

Figure 1b.

SiZer focuses on finding regions of statistically significant slope in the blue
curves. Slope works well in the example of Figure 1, because the interesting
features there are the 11 jumps (elsewhere the regression is flat). With the
high noise level used in Figure 1a (making signal recovery challenging, even by
the best wavelet methods), determining which jumps are statistically significant
turns out to be attainable by SiZer. In other cases of data analysis using
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smoothing methods, bumps are of interest. Bumps are also determined by
slope, because the curve slopes up on one side, and down on the other. In
general, SiZer flags features of these various types using a color map, such as
the one shown in Figure 1b.
The horizontal location in the SiZer map are the same as in the scale space

plot above. The vertical locations correspond to the window widths of the
family of blue curves, shown on the log scale. Each pixel shows a color that
essentially gives the result of a hypothesis test for the slope of the blue curve, at
the point indexed by the horizontal location, and at the scale (window width)
corresponding to that row. When the slope is significantly positive (negative)
the pixel is colored blue (red, respectively). When the slope is not significant
(as happens in regions where sampling noise is dominant), the color purple is
used. There is a fourth SiZer color, that does not appear in Figure 1b, which is
gray, used to show pixel locations where the data are too sparse for reasonable
statistical inference.
Note that each jump in Figure 1a corresponds to a red or a blue (depending

on the direction of the jump) region in the SiZer map in Figure 1b. Thus
SiZer has correctly found all 11 of the jumps in the thick black curve, so for the
specific goal of finding important features it substantially outperforms wavelet
methods.
A very careful look at the SiZer map shows a small, unexpected feature: a

tiny blue region at the finest scales (the bottom of the map) near 0.58. This
is suggesting the slope is statistically significant, when in fact the underlying
target curve is flat. Such features have been observed in a number of other
cases as well. This has not presented a serious obstacle to data analysis by
SiZer, because analysts have learned to not put too much credence into such
very small features when they are flagged by SiZer. But it is still very desirable
to eliminate these, to give a more precise analysis. This goal is attained in the
present paper, by developing an improved distribution theory.
First, we take a deeper look at the extent of the problem of small spurious

features appearing in the SiZer map, by studying some simulations. Figures 2
and 3 show some SiZer maps for simulated data from the null distribution in the
case of equally spaced design regression. Since the regression function is 0, the
data are simply i.i.d. standard Gaussian random variables. In this situation,
the SiZer map should ideally be completely purple, except for perhaps α100%
of the cases in the size α case (here α is always taken to be 0.05).
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Figure 2a
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Figure 2: Conventional SiZer maps, based on simulated null distributions,
for n = 1600 equally spaced regression data points. Figures 2a, b, c and d are

for 0.5, 0.75, 0.85 and 0.95, respectively, quantiles of distribution.

The SiZer maps shown in Figure 2 illustrate the population of SiZer maps
for this underlying distribution. They were drawn from a simulated sample
of 1000 such SiZer maps. The population was ordered in terms of number of
pixels that flag significant structure by being red or blue. Because these were
drawn from the null distribution, it is desirable for the number of such pixels to
be small. The first 405 of the 1000 ordered SiZer maps were completely purple
(and are thus not shown to save space). Figure 2a shows the 500th of these
(essentially the median of the population), where two pixels, at the finest scale,
were flagged as significant. Figure 2b shows the 750th (the 3rd quartile), with
substantially more significant pixels at medium fine scales. Figure 2c shows the
850th SiZer map, with quite a large blue region at medium coarse scales. Figure
2d is the 950th member of the ordered population, showing an even larger red
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region at the coarsest scales, plus the suggestion of a small mode at medium
scales. There appears to be a relationship between the number of spurious
pixels, and the scales at which they appear, which is not surprising because at
coarse scales adjacent pixels are strongly correlated.
This suggests a serious need for improvement in the size characteristics of

the conventional SiZer. The ideal here is that Figures 2a-c should be completely
purple, and that Figure 2d might or might not have some color. The goal of
this paper is to improve this performance, by using a better approximation of
the underlying distribution theory.
A natural solution to this problem would be the use of simulation methods

to compute the critical values needed for proper simultaneous adjustment. This
idea was seriously considered in Section 3 of Chaudhuri and Marron (1999) and
was implemented in early versions of the SiZer software. But there was a serious
drawback: the simulation took hours, while the crude approximation came up in
only a few seconds. In applications of SiZer, the interactive capabilities of the
crude approximation were preferred so uniformly, that the simulation version
was simply phased out as the software was adapted over the years. Of course
computers are faster now, so the simulation would no longer take hours, but it
is still some minutes, enough to keep the method out of the class of interactive
methods. The method proposed in this paper has the advantage of achieving
very good distributional properties in a really interactive way.
The results of the main proposed solution (later referred to as row-wise

adjustment) are shown in Figure 3. The format is the same as Figure 2, based
on the same 1000 underlying data sets, but this time an improved version of the
SiZer map is used. Again the maps were ordered, and the 500th, 750th, 850th
and 950th of the 1000 maps are shown as Figures 3a, 3b, 3c and 3d respectively.
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Figure 3a
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Figure 3: SiZer maps for simulated null distributions, for n = 1600 equally
spaced regression data points, based on the proposed row-wise procedure.
Figures 3a, b, c and d are for the 0.5, 0.75, 0.85 and 0.95, respectively,

quantiles of the distribution.

The SiZer maps in Figure 3 flag far less spurious structure than was found, for
the corresponding population quantiles, in Figure 2, In particular, in Figures 3a
and 3b (representing the first 3 quartiles), there were no spurious results. Even
for the 850th ordered SiZer map, in Figure 3c, the spurious structure is quite
small. Hence the improved SiZer map studied in Figure 3 clearly has better size
properties than the original SiZer shown in Figure 2. However, these results
are still not completely satisfactory.
This size problem is driven by a number of factors, that are studied in

Section 2, the most important of which is that the simultaneous inference is
only row-wise in nature. This means that the SiZer inference in Figure 3 is only
adjusted row by row. Hence it is not surprising that some spurious structure
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manages to be flagged here, since each of the maps in Figure 3 includes 11 such
rows (so just by chance, the test flags significant structure more often than 5%
of the time).
To address this problem we also propose a global adjustment in Section 2.

The corresponding globally adjusted version of Figure 3 has been plotted, but is
not shown here (to save space) because each of the panels is completely purple,
indicating that the size problem has been solved.
The distribution theory that drives the improvements in the statistical per-

formance of SiZer shown in Figures 2 and 3 is developed in Section 2 with the
main recommendations summarized in Section 2.5. Detailed analysis of the
impact of these improvements is done in Section 3.
As one should expect, the improved size properties, further investigated in

Section 3.1, come at a some cost in terms of power. Power issues are studied for
simulated data in Section 3.2 and for real data sets in Section 3.3. The main
lessons learned there are that while the loss of power appears to be minimal for
the row-wise adjustment, it is very significant for the global adjustment.
In our personal opinion, the substantial loss of power by the global methods

makes the row-wise improved SiZer more useful for data analysis than the global
versions. The reason is that away from the null distribution (i.e. when the
underlying target curve actually has some interesting structure), the spurious
features of the type illustrated in Figures 2 and 3 tend to come up far less
frequently than suggested by the size analysis. We view this as an acceptable
price to pay for most exploratory data analyses. However, we anticipate that
others will disagree, and furthermore recognize situations where statistical rigor
is imperative, and thus our software allows a choice between row-wise and global
implementations, together with an option to choose the level of significance α.
Matlab software, based on these new ideas can be found at the web site:

http://www.stat.unc.edu/postscript/papers/marron/Matlab6Software/Smoothing/

In addition to this important row-wise vs. global issue, there are also a
number of other points, such as the impact of smoothing boundary effects, that
are also discussed in Section 2.

2 Improved Distributions
To aid in the development of the distributional properties of SiZer, some basics
of kernel smoothing are first reviewed.
Convenient notation for density estimation is X1, ...,Xn for a random sample

from a probability density f(x). The kernel density estimate of f is

bfh (x) = n−1 nX
i=1

Kh (x−Xi) , (1)

where Kh, is a “kernel function”, indexed by a “window-width” h. The esti-
mator bfh (x) is simply interpreted as “putting probability mass 1/n in a region
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near each data point”, where the window width controls the critical amount of
spread of this mass. The window width h is important enough to appear as a
subscript in bfh. In all examples in this paper, Kh is taken to be the Gaussian
density function, with standard deviation h, because of its very natural scale
space interpretations. It is also important to point out that the scale-space ideas
naturally lead to making inference about the smoothed density

R
f(t)Kh(x−t)dt

rather than about the density f(x). See Chaudhuri and Marron (1999, 2000)
for discussion on these subjects.
Our notation for regression data is (X1, Y1) , ..., (Xn, Yn). Such data arise

in several ways, and admit several mathematical models. The term “equally
spaced design regression” is used to mean that the Xi are deterministic, and
equally spaced (in order), and that Yi = m (Xi) + εi, where m is the regres-
sion function, and where ε1, ..., εn are independent and identically distributed.
While the term “random design” means that (X1, Y1) , ..., (Xn, Yn) are a random
sample from a bivariate distribution, with E (Yi|Xi) = m (Xi), so that again m
is the regression function. For random design regression, it can also be useful to
think of “residuals”, defined as εi = Yi −m (Xi). For both settings a common
estimator is the local linear smoother, defined at each location x as

bm (x) = a0, where (a0, a1) = argmin
a0,a1

nX
i=1

{Yi − [a1 (Xi − x) + a0]}2Kh (x−Xi) .

(2)
This estimator is simply interpreted as providing a local linear fit, in a window
centered at x determined by Kh, which is then “moved along” over the range
of x values. Again there are many competing estimators, but the local linear
smoother is the focus of this paper, for the same reasons as the kernel density
estimator. As above, the kernel window function Kh is the Gaussian density
function, with standard deviation h.
Because SiZer requires evaluation of a number of smooths (indexed by the

window width h), the fast binned implementation discussed in Fan and Marron
(1994) is important, especially for larger data sets.

2.1 SiZer distribution theory

Like other hypothesis tests, part of the performance of SiZer is driven by the
distribution of SiZer under the null hypothesis of “no signal”. It is desired to
set the size of the test, i.e. the probability of “false positives”, to be a small
pre-set value α. There are two natural approaches to addressing the multiple
comparison problems. The first, called “row-wise” simultaneous inference, seeks
to have at most α100% of the rows containing “false positives”. The second,
called “global” simultaneous inference, aims at having at most α100% of the
SiZer maps containing false positives.
To analyze the “row-wise” problem fix a particular row of the SiZer map.

The row contains colored pixel values, which report the results of a family of
hypothesis tests. The distribution theory for each row is that of a sequence of
test statistics (modeled as random variables) at each grid point in the domain
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of the smoother, i.e. at each pixel location in the SiZer map. Let T1, ..., Tg,
where g is the number of grid points, denote these test statistics. The pixels are
equidistant and we can assume without loss of generality that the i-th pixel is in
the location i∆̃ for some ∆̃ > 0. At the ith pixel in this given row of the SiZer,
the color blue (significantly increasing) is used when Ti > C, and the color red
when Ti < −C. The overall size of the row-wise simultaneous SiZer inference
will be α when C is chosen such that, under the null distribution of the target
curve being constant,

P [{Ti > C or Ti < −C} for some i] = α. (3)

We will show in the appendix that the sequence T1, ..., Tg could be approx-
imated by a stationary Gaussian process with mean zero, variance one and
correlation

corr(Ti, Ti+j) = e
−j2∆̃2/(4h2)

"
1− j

2∆̃2

2h2

#
, (4)

where h is the bandwidth associated with the SiZer map row. In this approx-
imation, boundary issues that introduce non-stationarity are ignored. In what
follows we will refer to the test statistics of a fixed SiZer row as Ti.
Similarly, the whole SiZer map is a matrix of pixels that were generated

based on a matrix of test statistics⎛⎜⎝ T1,1 · · · Tg,1
...

. . .
...

T1,r · · · Tg,r

⎞⎟⎠ .
Each row of the matrix corresponds to a particular bandwidth and each column
corresponds to a particular location. SiZer bandwidths are chosen on a loga-
rithmic scale (sensible, since bandwidth is a multiplicative notion) and we can
assume without loss of generality that the k-th row was calculated using the
bandwidth hdk, for some h > 0 and 0 < d < 1.
Again the random field T1,1, ..., Tg,r could be approximated by a mean zero,

variance one Gaussian random field with correlation

corr(Ti,k, Ti+j,l) = e
−j2∆̃2/(2h2(d2k+d2l))

"
1− j2∆̃2

h2(d2l + d2k)

#µ
2dk+l

d2k + d2l

¶3/2
,

(5)
In what follows we will use Ti,j to denote the test statistics of the SiZer map.

2.2 Row-wise extreme value theory for SiZer

The row-wise simultaneous inference used in SiZer depends on finding approxi-
mate solutions, in C, to the equation (3). Chaudhuri and Marron (1999) used a
“number of independent blocks” approach to give a first approximate solution.
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In this paper, much more precise approximations are developed. These come
from

P [{Ti > C or Ti < −C} for some i] = P [|Ti| > C for some i]
= 1− P [|Ti| < C for all i]
= 1− P

h
max
i
|Ti| < C

i
.

If T1, ..., Tg were independent, then the needed distribution is simply a power of
the distribution of the absolute value of a Gaussian random variable, since

P [|Ti| < C for all i] =
gY
i=1

P [|Ti| < C] = P [|Z| < C]g ,

where Z is a standard Gaussian random variable.
Of course the main challenge is due to the fact that SiZer pixels are not

independent. To that end consider a stationary, mean zero, variance one,
Gaussian process T1, ..., Tg, with a j step correlation denoted ρj . We will be
interested in the distribution of max (T1, ..., Tg). Berman (1964) has proved
that if log(j)ρj → 0 the distribution function of max (T1, ..., Tg) behaves asymp-
totically as the g-th power of the distribution function of a standard Gaussian
random variable, i.e.,

|P [max (T1, ..., Tg) ≤ z]− Φ(z)g|→ 0 as g →∞. (6)

Unfortunately this approximation is usually of little practical significance as the
speed of convergence is very slow. In order to overcome this one needs to consider
second order asymptotics. There are at least two alternate approximations in
the literature based upon more detailed asymptotics, with the aim of improving
the small sample properties of (6).
The first approach, discovered by Rootzén (1983), shows that if the time

series is m dependent, if g(1− Φ(xg))→ κ, and if max(ρ1, ..., ρm) > 0 then

P [max (T1, ..., Tg) ≤ xg]− Φ(xg)g ∼ e−κRg as g →∞,

where Rg is positive quantity depending only on the ρj ’s, g and κ. The formula
for Rg is very complicated, so we will not reproduce it here. An interested
reader can consult section 4.6 of Leadbetter, Lindgren and Rootzén (1983) for
details.
The second approach, discussed in Hsing, Husler and Reiss (1996), is based

on the observation that for dependent data it is often better to approximate
P [max (T1, ..., Tg) ≤ x] by Φ(x)θg where θ < 1. Their main idea is to find θ
using asymptotic considerations. In order to get θ < 1 they need the correlation
ρj to increase to 1 with g for each fixed j.
To achieve this Hsing et al (1996) embed the series in a triangular array

T̂j,g, where rows are indexed by g. For each fixed g, the random variables
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T̂j,g, j = 1, 2, ... are mean zero, variance one, stationary Gaussian series with
the j step correlations ρj,g satisfying

log(g)
¡
1− ρj,g

¢
→ δj as g →∞, for all j,

where δj ∈ (0,∞]. They define

ϑ = P
h
V/2 +

p
δkHk ≤ δk for all k ≥ 1

i
, (7)

where V is a standard exponential random variable and Hk is a mean zero
Gaussian process independent of V that satisfies EHiHj =

δi+δj−δ|i−j|
2
√
δiδj

. The

authors then claim that under certain technical conditions on ρj,g the distribu-

tion function P [max
³
T̂1,g, ..., T̂g,g

´
≤ x] could be approximated by Φ(x)ϑg. The

parameter ϑ has been called the “cluster index”.
Wilhelm (2002) performed an extensive simulation study comparing the

three possible approaches for a wide class of stationary Gaussian processes.
The simulation study proved inconclusive as neither of the methods clearly
dominated the other two. In fact none of the approaches seemed to give reliable
answers in the case of highly dependent stationary series. In our simulation
study, described in section 3.1, the implementation of the Rootzén method was
seen to have even worse performance than the conventional SiZer approach,
based on the independent block calculation, whose size characteristics are illus-
trated in Figure 2. Thus in the remainder of this paper we only utilize the
approach of Hsing et al (1996), which improves the size of SiZer dramatically,
as seen in Figure 3.
In the particular case of SiZer, as noted in Section 2.1, it is reasonable to

assume that under the null hypothesis T1, ..., Tg are Gaussian, with mean 0 and

variance 1 and j step correlation ρj = e
−j2∆̃2/(4h2)

h
1− j2∆̃2

2h2

i
. A natural way

to embed our SiZer row into a triangular array compatible with Hsing et al
(1996) is to assume that ∆̃/h = C/

√
log g. This choice leads us to the following

theorem. The proof appears in the appendix.

Theorem 1 Consider a triangular array T̂i,g of mean zero, variance 1, Gaussian
random variables. For each fixed g the random series T̂1,g, . . . , T̂g,g is stationary
with j step correlation

ρj,g = e
−j2C2/(4 log g)

∙
1− j2C2

2 log g

¸
,

where C > 0. Then

lim
g→∞

P

∙
max
i=1,...,g

T̂i,g ≤ u(x)
¸
= e−ϑe

−x
, (8)

where

ϑ = 2Φ

Ã√
3C

2

!
− 1 (9)
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and

u(x) =
p
2 log g +

x√
2 log g

− log log g + log 4π√
8 log g

.

Hsing et al (1996) recommend that, in application, Theorem 1 should be used

to approximate P
h
maxi=1,...,g T̂i,g ≤ x

i
by Φ(x)ϑg rather than by the limiting

Gumbel distribution. Their reasoning is based on the fact that the Gaussian
power distribution converges to the Gumbel distribution of Theorem 1 and the
empirical fact that the Gaussian power distribution often fits better then the
limiting Gumbel distribution. Following their recommendation we conclude that
in the case of SiZer

P

∙
max
i=1,...,g

Ti ≤ x
¸
≈ Φ(x)θg, (10)

where the cluster index

θ = 2Φ

Ãp
3 log g

∆̃

2h

!
− 1. (11)

Recall that ∆̃ is the distance between the pixels of the SiZer map, g is the
number of pixels on each row, h is the bandwidth used for the fixed row studied
and Φ is the standard normal distribution function.
Chaudhuri and Marron (2002) have shown that in a number of real data

situations, interesting structure can be found in the data using a curvature
based version of SiZer. In some cases this discovered structure is not flagged
as statistically significant by the slope version. Hence, we derive an anal-
ogous formula that can be used for this curvature version. Using a simi-
lar approximation as for the slope version of SiZer we conclude that under
the null hypothesis the curvature SiZer version test statistics T̄1, ..., T̄g are
approximately Gaussian, with mean 0 and variance 1 and j step correlation

ρ̄j = e
−j2∆̃2/(4h2)

³
1− j2∆̃2/h2 + j4∆̃2/(12h4)

´
. This leads to the cluster in-

dex of

θ̄ = 2Φ

Ãp
5 log g

∆̃

2h

!
− 1.

Detailed discussion, with examples, are of some interest. However, they are not
included here (except for Figure 11), because the general ideas are the same as
for the slope version of SiZer, so it does not seem to be worth the space.

2.3 Global Extreme value theory for SiZer

As in section 2.2 we will need to study the asymptotic distribution of the maxima
of the whole SiZer map, i.e.,

max
i=1,...,g

max
j=1,...,r

Ti,j .

Since the bandwidths are chosen on a logarithmic scale, a heuristic argument
gives us reason to believe that the rows are roughly independent. We will show
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that the heuristic argument can be made rigorous for the distribution of the
maximum in a certain asymptotic sense.
In the particular case of SiZer, as noted in Section 2.1, it is reasonable to

assume that under the null hypothesis T1,1, ..., Tg,r are Gaussian, with mean 0
and variance 1 and correlation given by (5). In order to be able to make use of
Theorem 1 we again set ∆̃/h = C/

√
log g. The following theorem is proved by

comparing the maximum of a SiZer map with the maximum of a similar map
where the rows are assumed to be independent by a powerful generalization of
Slepian’s lemma due to Li and Shao (2002). The proof of the theorem is also in
the appendix.

Theorem 2 Consider a triangular array of matrices T̂i,j,g of mean zero vari-
ance 1 Gaussian random variables. For each fixed g the random variables have
correlation

corr(T̂i,k,g, T̂i+j,l,g) = e
−j2C2/(2 log(g)(d2k+d2l))

∙
1− j2C2

log(g)(d2l + d2k)

¸µ
2dk+l

d2k + d2l

¶3/2
,

(12)
where C > 0 and 0 < d < 1. Then

lim
g→∞

P

∙
max
i=1,...,g

max
j=1,...,r

T̂i,j,g ≤ u(x)
¸
= e−(ϑ1+···+ϑr)e

−x
,

where

ϑk = 2Φ

Ã√
3C

2dk

!
− 1 k = 1, . . . , r,

and

u(x) =
p
2 log g +

x√
2 log g

− log log g + log 4π√
8 log g

.

We again follow Hsing et al’s recommendation and approximate the maxi-
mum of the SiZer map by

P

∙
max
i=1,...,g

max
j=1,...,r

Ti,j < x

¸
≈ Φ (x)(θ1+···+θr))g , (13)

where

θk = 2Φ

Ãp
3 log g

∆̃

2hdk

!
− 1. (14)

Here ∆̃ is the distance between the pixels of the SiZer map, g is the number
of pixels in each row, r is the number of rows, hdk is the bandwidth used to
calculate kth row and Φ is the standard normal distribution function.
An analogous expression obtained by replacing

√
3 by

√
5 in (14) could be

derived for the curvature version of SiZer. However, we will not put the details
here to save space.
It is worth pointing out that Theorem 2 could be thought of as a first order

approximation. In fact the SiZer rows are correlated and it would be beneficial
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to study the second order asymptotic properties of the maximum of the SiZer
map. However, the probability theory necessary for this is not available yet, as
we would need second order extreme value theory for non-stationary Gaussian
random fields.

2.4 Empirical verification of the Gaussian Power distrib-
ution

The approximation of the distribution of the row-wise and global maximum by a
power of a standard Gaussian distribution in (10) and (13) respectively is based
on asymptotic considerations. The asymptotic is considered as the number of
pixels g approaches infinity. This section investigates the properties of this for
the most typical value g = 400. A similar study could be done for the row-wise
maximums but we omit it in order to save space.
Here we use the graphical device of the Quantile-Quantile (Q-Q) plot to

study how well the Gaussian Power distribution fits the simulated data that
was studied in Figures 2 and 3. See Fisher (1983) for an overview of Q-Q plots
and a number of related graphical devices.
The setting is again fixed design regression, for sample size n = 1600, based

on an identically 0 regression function, with standard Gaussian noise. For each
of 1000 realizations, we compute the maximum over all of the pixels in the
SiZer map, of the test statistics used to do inference (i.e. decide on the SiZer
color). The distribution of these 1000 maxima is studied in Figure 4, where it
is compared to the theoretical Gaussian Power distribution.
The Q-Q plot is a plot of the data quantiles (just the ordered data values) on

the vertical axis vs. the corresponding theoretical quantiles, from the Gaussian
Power distribution, on the horizontal axis. Connecting the dots give the red
curve. If the theoretical distribution were correct, and there was no sampling
variation, the red curve would lie exactly on the 45 degree line, shown in green.
Sampling variation leads to some departure from the green line. An important
question is whether the amount of variation is explainable by the sampling
process, or if it represents a serious departure of the data distribution from
the theoretical distribution. This issue is addressed by the family of blue
curves, which are 100 simulated Q-Q plots, from data having the theoretical
distribution. If the red curve lies nearly completely inside the blue envelope,
then we can conclude that the theoretical fit is good.
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Figure 4 QQ Plot showing that a power of Gaussian provides a good fit to the
maxima of the 1000 simulated SiZer maps under the null hypothesis. This plot
was generated using the same simulated data set as in figures 2 and 3. The
parameters are obtained by quantile matching (4a) and by the theoretical

considerations of Section 2.3 (4b). This shows that the global adjustment will
be slightly conservative, due to the slow rate of convergence.

The theoretical distribution considered in Figure 4 is a member of a para-
metric family. In particular, the Gaussian Power distribution is parametrized
by a scale parameter σ (the standard deviation of the underlying Gaussian dis-
tribution), and a shape parameter α (the power of the Gaussian c.d.f., i.e. the
number of independent Gaussians to maximize). These parameters are esti-
mated in Figure 4a by quantile matching. In particular, they are solutions of
the equations that make the Gaussian power distribution correct at the .5 and
.75 quantile (these were chosen to give good visual impression).
The estimated value of σ = 1.08 is very good, because the underlying

Gaussian distribution here has standard deviation 1. The estimated value
of α = 247.3 is appears to be unstable, being greatly affected by small changes
in the value of σ and the quantiles we decide to match. For example, if we set
σ = 1 we get α = 552. Moreover if we then decide to approximately match
quantiles .8 and .95 we get α = 689. In all of these cases the Q-Q plot shows
a reasonable fit. This phenomenon is related to the “distributional fragility”
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ideas of Gong et al (2001).
The value of α based on the asymptotic theory of Section 2.3 and calculated

from (13) is α = gθ = 886.3. The fit of this distribution is shown in Figure 4b.
We can see that while the fit is very good in the tail of the distribution, it is
not very good in the body of the distribution. This is caused by the fact that
even though we can approximate the distribution of the maximum as if the rows
were independent asymptotically, this approximation is slow to converge. The
fact that the red curve in Figure 4b is below the blue envelope for some of the
quantiles suggest that in practice the global adjustment will be conservative.
This conclusion is confirmed by the simulation results of Section 3.1 that shows
that global adjustment is indeed slightly conservative.
Similar Q-Q plots have been constructed for other simulation settings (de-

tailed in Section 3.1). The results were generally similar (i.e. the Gaussian
Power distribution gave a good fit) for the density estimation settings, and for
the larger sample sizes. For the smaller sample sizes, in the regression settings,
there were no values of the parameters σ and α that left the red curve within
the blue envelope. The values that gave the best visual fit, resulted in estimates
of σ that were far from 1, and unreasonable values of α. This occasional poor
performance seems to be due to Gaussian vs. t distribution issues, which are
discussed further in Section 3.1.

2.5 Proposed Improvements

As mentioned at the beginning of Section 2, there are two natural goals when
considering the size of SiZer. The first, called “row-wise” simultaneous inference,
seeks to have at most α100% of the rows containing “false positives”, i.e., pixels
flagged as statistically significant when no noise is present in the data. The
second, called “global” simultaneous inference, aims at having at most α100%
of the SiZer maps containing false positives.
The row-wise adjustment follows directly from the mathematical considera-

tions of Section 2.2. Define

CR = Φ
−1
µ³
1− α

2

´1/(θg)¶
,

where θ was defined in (11). Then color the ith pixel in the jth row blue if
the corresponding Ti > CR and red if Ti < −CR. Notice that under the null
hypothesis the distribution of max (T1, ..., Tg) is the same as the distribution
of -min (T1, ..., Tg). It follows that, if the data contains no signal, then the
probability there is a spurious color on the gth row is

P [Ti < −CR or Ti > CR for some i = 1, ..., g] ≤ P [min (T1, ..., Tg) < −CR] +
P [max (T1, ..., Tg) > CR]

= 2 (1− P [max (T1, ..., Tg) < CR])

≈ 2
³
1− Φ (CR)θg

´
= α.
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Thus no more than about α100% of the rows will have spurious colors, as desired.
Global adjustment is based on Section 2.3. Define

CG = Φ
−1
µ³
1− α

2

´1/((θ1+···+θr)g)¶
,

and recall that the θk were defined by (14). Then color the ith pixel, in the
jth row, blue if the corresponding Ti > CR and red if Ti < −CR. It is worth
pointing out that the constants CR are different for each row the constant CG
is the same for all the rows. Again

P [Ti,j < −CG or Ti,j > CG for some i = 1, ..., g, j = 1, ..., r] ≤ P [min (T1,1, ..., Tg,r) < −CG] +
P [max (T1,1, ..., Tg,r) > CG]

≈ 2
³
1− Φ (CG)(θ1+···+θr)g

´
= α.

Thus no more than about α100% of the SiZer maps will have spurious colors as
desired.

3 Analysis of Improvements
In this section we investigate the properties of these improvements of SiZer.
First the size properties are studied via a simulation study in Section 3.1. The
amount of power that is sacrificed to get the size correct, is studied via simulation
in Section 3.2, and through some real data examples in Section 3.3.

3.1 Size Simulations

To compare the size performance of the conventional SiZer with our new row-
wise and global versions of SiZer, we did an array of simulations against several
variations of “the null hypothesis”. We tried:

Settings Each of the settings of:

1. (KDE) kernel density estimation, for the Uniform(0,1) density,

2. (FDR-N) fixed design regression, for an equally spaced design, with stan-
dard Gaussian noise, but no signal,

3. (FDR-E) fixed design regression, for an equally spaced design, with stan-
dard Exponential noise,

4. (RDR-U) random design regression, where the Xi are chosen from the
Uniform(0,1) density, and the Yi are independent standard Gaussian.

5. (RDR-N) random design regression, where the Xi are chosen from the
N(0,1) density, and the Yi are independent standard Gaussian.
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Sample sizes For each of the above settings, the following sample sizes were tested:

1. n = 100,

2. n = 400,

3. n = 1600,

4. n = 6400.

For each of the 20 combinations above, 1000 pseudo data sets were drawn,
and the various SiZer maps were calculated, and the numbers of red and blue
pixels (ideally none, since there are no signals in any of these examples) was
counted.
One way to summarize these numbers is row-wise in the SiZer maps. In

particular, for each setting, each sample, and each row, report the percentage
of realizations of the data where there were some red or blue pixels in that row.
Figure 5 shows these summaries. Notice that if no red or blue pixels are present
in a particular row, the maxi=1,...,g |Ti| for Ti’s corresponding to this row was
less then the preset value of the cut-off C. In particular, if we set C using the
row-wise approximation of Section 2 and the simulated proportion of red and
blue pixels is equal to the nominal value α = .05 then we have some evidence
that our approximation is working. As seen in Figure 5 this is often the case.
Instead of showing long tables of numbers, the main ideas are made more

accessible by displaying the results with a parallel coordinate plot, see Inselberg
(1985). Figure 5a summarizes performance for the Kernel Density Estimation
setting, Figure 5b does the same for the Fixed Design Regression Gaussian noise
setting, Figure 5c is for the Uniform(0,1) Random Design Regression setting,
Figure 5d is for the N(0,1) Random Design Regression setting and Figure 5e
contains the Fixed Design Regression exponential noise setting. The coordinates
(points on the horizontal axes) represent rows of the SiZer map, and thus are
quantified via log10 h (only shown on the bottom panel, to avoid overplotting
with the Figure titles), just as on the vertical axes of the SiZer maps. The ver-
tical axes are the percentage of rows (across the 1000 replications) that showed
some significant structure (i.e. red or blue pixels). Each curve represents one
setting (indicated by color as shown) and one sample size (indicated by line
type as shown). The curves are piecewise linear, with nodes at each row of
the map (i.e. each window width h). The heights at the nodes contain the
useful information, and the connecting line segments simply make it easier to
understand the relationships.
Ideally, all of these values should be close to α = 0.05 for the row-wise

procedures such as the conventional SiZer, and our new row-wise SiZer. Hence,
this level is shown by a horizontal black line.
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Figure 5 Row-wise summaries of the percent of significant pixels for SiZer
under the null hypothesis, allowing comparison of the different simultaneity
adjustments and sample sizes. Clearly shows relationship between sample

sizes. Figures 5a, b, c, d and e are for the settings of KDE, FDR-N, RDR-U,
RDR-N and FDR-E respectively.

Note that in almost every case the conventional SiZer flags significant struc-
ture far too often. This again verifies the main idea in this paper: it is well
worth finding less crude approaches to this multiple comparison problem.
Similarly, in a large majority of the cases, the new Row-Wise SiZer is quite

close to the desired α = 0.05.
As expected, the global methods are almost always quite far below the de-

sired level, because they aim at a global size of α = 0.05, which requires them
to be deliberately conservative when studied in this row-wise sense.
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A perhaps surprising feature in the KDE setting, studied in Figure 5a, is
the 0 values everywhere for the second and third coarsest scales. This is due to
the crude type of boundary adjustment used. Boundary adjustment is essential
for estimating the Uniform(0,1) density with kernel estimates, because these
methods tend to “round off the corners” at both edges. If the summaries of
Figure 5 are computed with no adjustment, far too many percentages are 100%,
since every realization of most rows has some significant pixels flagged at the
edges. To avoid this boundary problem, the simple “circular design” device
was used (where the data are treated as periodic, and shifted copies of the data
are added at each end). While this crude adjustment is reasonably effective
at most scales, there are a few where it introduces artifacts such as the zeros
shown in Figure 5a. Such boundary effects are not a serious issue for the
regression settings, because the local linear smoother that is used in both does
an automatic first order boundary adjustment.
Another departure from the expected size occurs for the regression settings,

shown in Figures 5b, 5c, 5d and 5e. These are substantial increases in the per-
centage of realizations flagged as significant at finer scales. At these scales,
there can be few points in the kernel window, so that the underlying null dis-
tributions are better approximated by a t distribution, than by the Gaussian.
This idea is verified by the fact that it is generally worst for n = 100, better
for n = 400, and the problem is nonexistent for n = 1600 and n = 6400. Ex-
ceptions include the FDRs in Figure 5b and 5e, where the dotted curves for
n = 100 disappear for fine scales (because there are never enough data points
in the kernel windows, i.e. the SiZer color is always gray), and the RDRs in
Figure 5c and 5d, where the dotted curves for n = 100 actually go down for
finer scales, because there are typically just a few locations where the data are
rich enough to do any inference (thus most of the pixels are colored gray), and
in those remaining locations the SiZer color is often completely purple.
A simple approach to this problem is to replace the Gaussian distribution

with the t distribution. This was attempted, but the results were too conserv-
ative to be useful. The reason seems to be the complicated interaction of the t
distribution with the correlation structure.
The comparison in Figure 5 is for the row-wise size of the statistical inference.

But also of keen interest is the global size, for the multiple comparison problem
over the entire map, not just within individual rows. Global size, for the same
simulation settings, is studied in Figure 6.
Figure 6 is a parallel coordinate display of the percent of realizations (out of

1000) for which there were some significant pixels in the SiZer map. Again color
is used to indicated SiZer type, with the same color scheme. The coordinates
now are taken to be the sample size n, different from SiZer map row as in Figure
5), to highlight the perhaps surprising impact of n on the results. Line type is
now used to show the setting.
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Figure 6: The global size summaries showing the percent of significant pixels
in the full SiZer maps, under the null hypothesis, grouped by settings.

In this sense, the size problems of the conventional SiZer map are even worse
than in the row-wise sense indicated in Figure 5 (note the larger vertical axis).
The new Row-Wise SiZer is also always far above the nominal level of a = 0.05,
which not surprisingly shows that there is substantial difference between row-
wise and global statistical inference. This is consistent with the global methods
appearing as generally too conservative in Figure 5.
Performance of the global SiZer approach, is quite dependent on the setting.

For Kernel Density Estimation the method is generally conservative. This is
caused by the boundary effect and adjustment discussed above, and by data
sparseness issues at the finest scales. In particular, the 0’s at the second and
third coarsest scales mean that the “effective number of rows” r, is essentially too
large in our calculations. For regression the percentages are often too large. For
n = 400, the percentage of maps flagged as significant increases substantially,
because of the t effect described above (most of which occurs at the finest scales
where there are relatively few points in each kernel window, so the number of
degrees of freedom can be as low as 4). As noted above, many of the curves are
lower for n = 100, because of data sparsity effects. As expected, the t effect is
no longer present for large sample sizes (n = 1600, n = 6400), and the Global
SiZer has excellent size performance for all five regression settings.
Figure 7 is a reorganization of the parallel coordinates plot in Figure 5, which

highlights an important lesson about how the settings compare, that is obscured
there because the settings are in different panels. This time the panels show
the sample sizes n, with n = 100, 400, 1600 and 6400 in Figures 7a, b, c and d
respectively. As in Figures 5 and 6, color represents SiZer type, using the same
scheme. The line type is consistent with Figure 6, representing the setting.
Again the coordinates represent rows of the SiZer map, and are indexed by
log10 h .
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Figure 7 Row-wise summaries of the percent of significant pixels for SiZer
under the null hypothesis, allowing comparison of the different simultaneity
adjustments and settings. This organization shows that settings are very

similar. Figures 7a, b, c and d are for the sample sizes of n = 100, 400, 1600
and 6400, respectively.

The main lesson of Figure 7 is that curves of the same color tend to be very
close to each other, i.e. the settings are very similar. While there are important
differences in the simultaneity type (expressed by colors), and the sample sizes
(different panels), the settings are similar. This validates the approach of using
the common mathematical structure, as developed in Section 2.1.
Another useful feature of the view shown in Figure 7, is that it provides

another way of seeing that the Row-wise method is best in this sense, and that
the best results are for the larger sample sizes. In particular, it is very clear
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that for high sample sizes of n = 1600 and n = 6400, the percentages virtually
achieve their goal of α = 0.05, uniformly over both rows and settings (except
for density estimation at large scales).
A similar simulation study has been carried out to investigate the size prop-

erties of the curvature version of SiZer. The results were similar to those sum-
marized in Figures 5 - 7 for the slope version of SiZer and are not explicitly
reported to save space. The main differences between the results were that
both the boundary effect in the kernel density estimation and the t effect for
the small sample sizes of regression were even more severe in the curvature
version than in the slope version.

3.2 Power Simulations

The previous section showed that our global versions of SiZer were quite good
at achieving the desired overall size for the statistical inference. In this and
the next section, by analyzing some simulated and real data sets, it is seen
that this could entail substantial cost in terms of power especially when using
one of the global adjustments. This is to be expected as it is consistent with
well established principles of hypothesis testing, in particular, the theory which
establishes the trade-off between size and power. The original SiZer had an
inflated Type I error, which resulted in more power (smaller Type II error).
The first example is the same as shown in Figure 1, the Donoho Johnson

blocks regression function, with high noise, as shown in Figure 1a. Figure 8
allows direct comparison between the conventional SiZer shown in Figure 8a, the
new row-wise SiZer shown in Figure 8b and the Global SiZer shown in Figure
8c.
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Figure 8: Full range of SiZer analyses of the Donoho - Johnstone Blocks
regression, with high noise. Figures 8a, b and c show conventional, row-wise

and global SiZer versions, respectively.

As shown in Figure 1b, the conventional SiZer flags all 11 jumps as statis-
tically significant, but it also indicates a spurious jump near x = 0.58. As
expected, the new row-wise SiZer (Figure 8b) flags fewer pixels as significant,
but still finds all 11 jumps. The spurious jump near x = 0.58 is still present,
but smaller. For the two global methods the spurious feature disappears, but
also the jump near x = 0.15 disappears as well. This reflects the loss of power
from insisting on global simultaneous inference.
If one were to use only the global analysis, the upward jump near x =

0.78, would be flagged as statistically significant by a very small blue region.
Thinking from the viewpoint of conventional SiZer, it might be tempting to
ignore this. However an important lesson is that any significant pixel (regardless
of how small it is) at all that is found by a global method, should be regarded
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as important underlying structure.
Figure 9 shows a simulated density estimation example, with the same four

panels as in Figure 8. The underlying density is the Trimodal Gaussian Mixture
Density from Marron and Wand (1992), and the sample size is n = 10, 000.
Both the conventional and new row-wise SiZer show three statistically significant
modes. However, the conventional SiZer also flags a spurious fine scale feature
near x = 1.4, which correctly disappears for the new row-wise version. The
global SiZers show some loss of significant structure, in particular the small blue
region just left of x = 0, again reflecting some loss of power.
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Figure 9: Full range of SiZer analyses of the Trimodal mixture of
Gaussians. Figures 9a, b and c show conventional, row-wise and global SiZer

versions, respectively.

Similar plots have been constructed for all of the Marron-Wand Gaussian
mixture densities, for the sample sizes n = 100, 1000, 10, 000. Overall, the dif-

26



ferent versions of SiZer tended to flag very similar structure as being statistically
significant. There was generally substantial erosion of the red and blue regions
for the methods with better size properties (to a similar extent to that shown in
Figure 9). Sometimes this erosion was enough that significant features actually
disappeared, as in Figure 9c, but most often they did not. Spurious features,
such as the very small red region, near x = 1.4 in Figure 9a, were fairly rare,
perhaps because at most locations, these densities are not close to flat (as at the
null distributions studied in Section 3.1), but instead have substantial slope.

3.3 Real Data Examples

Another approach to studying the trade-off between size and power that is made
by these different versions of SiZer is through the analysis of real data. Figure
10 shows the density estimation example of the 1975 British Family Incomes
data, that was carefully analyzed by Schmitz and Marron (1992), again using
the same three panels of Figures 8 and 9. The conventional SiZer analysis shows
two significant modes, which has been independently confirmed by a parametric
analysis as discussed in Schmitz and Marron (1992). The red region between
modes is still present for the new row-wise SiZer shown in Figure 10b, and again,
greater credence needs to be placed in this more precise version. Unfortunately
this red region completely disappears in the global SiZer map. This loss of
power is particularly unfortunate, since the bimodality is the important feature
of this data set.
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Figure 10: Full range of SiZer analyses of the British Family Incomes data.
Figures 10a, b and c show conventional, row-wise and global SiZer versions,

respectively.

While the global slope version was unable to find the important bimodal
characteristics of the British Family Incomes data in Figure 10, it is interesting
to note that the global curvature version of SiZer does flag this feature of the
data as statistically significant, as shown in Figure 11. The conventional cur-
vature version of SiZer was proposed by Chaudhuri and Marron (2002). Here
we improve the simultaneity using ideas from Section 2.
To clearly distinguish it from the slope version of SiZer, the curvature ver-

sion uses a different color scheme. Pixels with significant concavity (second
derivative strongly negative) are indicated by cyan (light blue). Those with
significant convexity are colored orange. Locations in scale space where there
is no significant curvature are colored green. Again gray is used in regions
where the data are too sparse.
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Figure 11
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Figure 11: Global curvature SiZer analysis of the British Family Incomes
data. This finds the bimodality that is known to be an important feature of this

data set.

The bimodality of this data set is shown to be strongly significant, by the
very small orange region near x = 0.6. While the region is very small, again
it is important to keep in mind that when using global version of SiZer, any
significance at all should be regarded as strong evidence.
Figure 12 shows an example from flow cytometry, where the presence and

percentage of florescence marked antibodies on cells are measured. The medical
goal is the determination of quantities such as the percentage of lymphocytes
among cells. The data come from the laboratory of Drs. S. Mentzer and
J. Rawn, Brigham and Women’s Hospital, Boston, Massachusetts, and we are
grateful to M. P. Wand for putting us in contact with them. In a single
experiment, many cells are run through a laser, and the intensity of florescence
of each cell is measured, and the data are stored as 256 bin counts, where bins
are called “channels”. These bin counts are traditionally viewed on the square
root scale. An important question is how many “bumps” there are in this square
root histogram. Here we treat this as a regression problem.
Figure 12 shows again the same three panels, comparing the different simul-

taneity methods. Figure 12a, conventional SiZer, shows two clear modes, and
a small fine scale feature near x = 20. This small feature is already seen to be
spurious by the new row-wise SiZer map in Figure 12b. This time the effect of
the global version is representative of many of the examples we have seen: the
significant red and blue regions are somewhat eroded, but indicate essentially
the same lessons.
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Figure 12: Full range of SiZer analyses of a flow cytometry data set.
Figures 11a, b and c show conventional, row-wise and global SiZer versions,

respectively.

Based on this experience, and a number of other examples studied during
this research, we recommend that the default version of SiZer be the new row-
wise approach. This choice is made to give reasonable power, but it needs to be
kept in mind that the statistical inference is not completely valid in the classical
sense, which is often acceptable in exploratory data analysis situations. When
statistical rigor is essential (e.g. before making a large investment of research
effort in understanding “phenomena found”) it is recommended that the global
version be used.
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4 Future Work
While the methods developed in this paper are intended to enhance the applica-
bility of the SiZer method, there are a number of remaining open problems,
including:

1. Develop the probability theory needed to improve the global approxima-
tion of Section 2.3, by an approximation that takes the full random field
distribution of the SiZer inference into account.

2. More careful boundary adjustment, as discussed in Section 3.1.

3. Improved incorporation of the t distribution, for regression settings, with
careful accounting of the correlation structure, as discussed in Section 3.1.

A Appendix
In the appendix we present proofs of the key results of this paper.

A.1 Derivation of (4) and (5)

We will derive the correlation in the case of equally spaced regression, but our
formulas also apply to other settings, including random design regression and
density estimation, because these setting have some very strong connections.
For some interesting mathematics that makes these connections precise, see
Nussbaum (1996), Brown and Low (1996), Brown at. al. (2002) and Grama and
Nussbaum (1998, 2002). This equivalence between settings is also demonstrated
empirically in Figure 7.
When dealing with regression data, SiZer uses the local linear smoother

defined by (2). To color the pixels SiZer checks whether the estimate of the first
derivative

a1 = −c−1
"
nX
i=1

Kh(x−Xi)
#"

nX
i=1

(x−Xi)Kh(x−Xi)Yi

#

+ c−1

"
nX
i=1

(x−Xi)Kh(x−Xi)
#"

nX
i=1

Kh(x−Xi)Yi

#
, (15)

c =

"
nX
i=1

Kh(x−Xi)
#"

nX
i=1

(x−Xi)2Kh(x−Xi)
#

−
"
nX
i=1

(x−Xi)Kh(x−Xi)
#2
.

is significantly different from 0. In the particular case of fixed design regression
the design points Xi satisfy Xi = i∆, where ∆ > 0 is fixed. If x is away from
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the boundary, it follows from symmetry of the kernel that

nX
i=1

(x−Xi)Kh(x−Xi) ≈ 0.

This means that the second term in (15) disappears.
Denote p = ∆̃/∆. The number p is “the number of data points per SiZer

column”. For simplicity of notation we can assume that k is a positive integer.
This is supported by the fact that SiZer colors the pixel gray if the data are too
sparse.
Thus Tj is proportional to the estimate of the first derivative a1 calculated

for x = j∆̃ = jp∆. In particular

Tj ≈
nX
q=1

Wh
jp−qYq. (16)

The exact form of the Wh
jp−q is given in the first term of (15). For our purpose

it suffices to realize that Wh
jp−q is proportional to −(jp− q)Kh/∆(jp− q). Thus

the weights Wh
q are proportional to the derivative of the Gaussian kernel with

standard deviation h/∆.
If the null hypothesis of no signal is true, then the Yi are independent, iden-

tically distributed random variables. If additionally the Y ’s have their first
two moments, the linear approximation (16) greatly simplifies the distribution
theory, because the Central Limit Theorem gives an approximate Gaussian dis-
tribution, with mean 0 (under the SiZer null hypothesis) and variance 1, by
appropriate scaling. The full joint distribution of T1, ..., Tg also depends on the
correlation between them. This correlation is approximated by

corr(Ti, Ti+j) =

P
qW

h
q−jpW

h
qP

q(W
h
q )
2
≈ e−(jp∆)2/(4h2)

∙
1− (jp∆)

2

2h2

¸
,

where the last step follows from replacing the sums by integral approximations.
The equation (4) now follows by observing that p∆ = ∆̃.
Similarly, if we consider correlation between pixels at different SiZer rows

we get

corr(Ti,k, Ti+j,l) =

P
qW

hdk

q−jpW
hdl

qhP
q(W

hdk
q )2

P
q(W

hdl
q )2

´1/2
≈ e−j

2∆̃2/(2h2(d2k+d2l))

"
1− j2∆̃2

h2(d2l + d2k)

#µ
2dk+l

d2k + d2l

¶3/2
,

which is (5).
In practice we do not know the standard deviation of the noise εi. This

is needed to scale T1,1, ..., Tg,r to have variance 1. For this reason it must be
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estimated from the data introducing additional dependence as well as other
issues. However, this is not a problem in theory, as consistent estimators of this
standard deviation are available and therefore the calculations presented in this
section will still be valid asymptotically. This is confirmed by our simulation
reported in section 3.1, where the estimation of the standard deviation from the
data seems to create problems only for small sample sizes at fine scales.

A.2 Proof of Theorem 1

Using Hsing et al (1996) we see that (8) follows as long as we can verify the
conditions of Hsing et al’s Theorem 2.2.
To that effect first notice that

lim
g→∞

log(g)(1− ρj,g) =
3j2C2

4
,

which verifies the first condition of Theorem 2.2.
Verification of the remaining conditions is fairly routine. Our calculations

are quite similar to the calculations performed in section 3 of Hsing et al (1996)
for a different stationary process. Set

lg = (log g)
1/2 log(log g).

If log log g >
√
6/C then

sup
j≥lg

|ρj,g| log g ≤ |ρlg,g| log g → 0,

and the second condition of Theorem 2.2 follows. To verify the last condition,
fix a small ε > 0 and notice that if j2C2/(4 log g) > ε then

−2e−3/2 ≤ ρj,g ≤ e−ε.

On the other hand, if j2C2/(4 log g) ≤ ε, then

3j2C2

4 log g

³
1− ε

2

´
≤ 1− ρj,g ≤

3j2C2

4 log g
.

Thus
lgX
j=m

g−(1−ρj,g)/(1+ρj,g)
(log g)−ρj,g/(1+ρj,g)

(1− ρj,g)
1/2

=

lgX
j=m

g−(1−ρj,g)/(1+ρj,g)
(log g)(1/2)(1−ρj,g)/(1+ρj,g)

((1− ρj,g) log g)
1/2

≤ max

Ã
lgg
−(1−exp(−ε))/(1+exp(−ε)) (log g)

(1/2)(1+2 exp(−3/2))/(1−2 exp(−3/2))

((1− exp(−ε)) log g)1/2 ,

lgX
j=m

exp

∙
3j2C2

8

³
1− ε

2

´¸ exp[(3j2C2) log log g/(4 log g)]
((3j2C2)(1− ε/2)/4)1/2

!
.
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and the final condition of Theorem 2.2 is readily verified.
To finish the proof of the theorem we need to determine the value of ϑ, i.e.,

we need to calculate the probability in (7). This could be a rather difficult
task in general, however in this case we are helped by the fact that EHiHj =
δi+δj−δ|i−j|
2
√
δiδj

= i2+j2−|i−j|2
2ij = 1 and therefore Z = H1 = H2 = ..., where Z is a

standard Gaussian random variable. Thus the problem in (7) transforms to

ϑ = P
h
V/2 + k

p
3ξZ ≤ 3ξk2 for all k ≥ 1

i
, (17)

where ξ = C2/4. Since V is a non-negative random variable, the inequality in
(17) implies Z <

√
3ξ. Moreover under this condition V/2 + k

√
3ξZ − 3ξk2 is

decreasing as a function of k and therefore

ϑ = P
h
V/2 +

p
3ξZ ≤ 3ξ

i
= E

³
P
h
V ≤ 2(3ξ −

p
3ξZ) | Z

i´
=

Z √3ξ
−∞

(1− e−2(3ξ−
√
3ξZ))

e−
z2

2

√
2π
dz

= 2Φ
³p

3ξ
´
− 1.

The equation (9) follows immediately.

A.3 Proof of Theorem 2

Unlike the proof of Theorem 1, we cannot use an “off the shelf” theorem. In-
stead we will compare the maximum of the random field with the maximum of
the random field with the rows assumed to be independent using an improved
version of Slepian’s lemma due to Li and Shao (2002).
Recall that T̂1,1,g, . . . , T̂g,r,g is a mean zero, variance one, Gaussian random

field with correlation given by (12). For simplicity denote

r̂(i,k),(j,l),g = corr(T̂i,k,g, T̂i+j,k,g).

Define T̃1,1,g, . . . , T̃g,r,g as a mean zero, variance one, Gaussian random field
with correlation

corr(T̃i,k,g, T̃i+j,l,g) = δk,le
−j2C2/(4d2k log g)

∙
1− j2C2

2d2k log g

¸
,

where δk,l is the Kronecker’s delta, i.e., δk,l = 1 if k = l and 0 otherwise. Again
denote

r̃(i,k),(j,l),g = corr(T̃i,k,g, T̃i+j,k,g).

We defined the T̃i,j,g in such a way that r̂(i,k),(j,k),g = r̃(i,k),(j,k),g.
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Since the number of rows r is fixed, independence of the rows and Theorem 1
immediately imply that

lim
g→∞

P

∙
max
i=1,...,g

max
j=1,...,r

T̃i,r,g ≤ u(x)
¸
= e−(ϑ1+···+ϑr)e

−x
,

where

ϑk = 2Φ

Ã√
3C

2dk

!
− 1 k = 1, . . . , r

and

u(x) =
p
2 log g +

x√
2 log g

− log log g + log 4π√
8 log g

.

Therefore, to finish the proof of Theorem 2 it is enough to prove

lim
g→∞

¯̄̄̄
P

∙
max
i=1,...,g

max
j=1,...,r

T̂i,j,g ≤ u(x)
¸
− P

∙
max
i=1,...,g

max
j=1,...,r

T̃i,j,g ≤ u(x)
¸¯̄̄̄
= 0.

Notice that there is 0 < D < 1 such that |r̂(i,k),(j,l),g| ≤ D < 1 for all g, i, j
and k 6= l. This and Theorem 2.1 of Li and Shao (2002) imply that¯̄̄̄
¯P
∙
max
i=1,...,g

max
j=1,...,r

T̂i,j,g ≤ u(x)
¸
− P

∙
max
i=1,...,g

max
j=1,...,r

T̃i,j,g ≤ u(x)
¸ ¯̄̄̄
¯

≤ 1

8

X
i,j,k,l

|r̂(i,k),(j,k),g − r̃(i,k),(j,k),g|e
u(x)2

1+|r̂(i,k),(j,k)|

≤ K1r
2ge

u(x)2

1+D

∞X
j=1

e−
K2 j

2

log g

µ
1 +

K3 j
2

log g

¶
≤ K4r

2g1−
2

1+D (log g)3/2 → 0

as g →∞. Here K1, . . . ,K4 are suitable positive constants. This concludes the
proof.
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