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Medical Imaging    (serious FDA opportunity)

Early problems:

· Image denoising

· Registration

· Segmentation

More recent Problems:

· Understanding populations of “images”

· Discrimination (classification)

· Functional Data Analysis (generalized?)

Functional Data Analysis: A Personal View

Easy introduction via:      The “atom” of the statistical analysis

Statistical Context
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Data Conceptualization

Feature space            
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             Point Clouds
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Vectors
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Important Context

High Dimension Low Sample Size             
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(Personal) driving problems:

1. Medical imaging
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    high 10s – 100s,
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    20s – 100s

2. Micro-arrays measuring gene expression
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    100s – 10,000s,
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    10s – 100s

3. Chemometric spectra
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    1,000s,
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    10s

A real data example

Genetic Micro-Arrays  (thanks to C. M. Perou, et. al.):

Measures “expression” (activity) of many genes at once

Current Problem:     “Batch effects”              (
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(caused by production at different labs,  g, h, j)

Visualization of Problem:    PCA and 2-d scatterplot of proj’ns
· Serious problem, likely to affect subsequent analysis

· How to correct?

Batch Effect Adjustment

“Standard Approach”:    PCA (i.e. SVD), based on PC1

· Works well when PC1 is “in that direction”  (Toy e.g.)

(recall PC1 is in “direction of greatest variation”)

· Otherwise (e.g. here) quite doubtful

Linear Model (+ Random Effects) Approaches


-
“Interpretability”?  (followed by exploratory data analysis??)

Proposed “New” Approach:    Use discrimination methods

Discrimination

A.K.A. Classification       (Two Class)

-
Using “Training Data” from Class +1,   and from Class –1

-
Develop a “Rule”,    for assigning new data to a Class

Canonical Example:    Disease Diagnosis

· New patients are either “healthy” or “ill”

· Determine on basis of measurements

· Based on preceding experience (training data)

Quick Overview of Discrimination

Toy Graphic     i.i.d.  
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Classical Attempt:  Fisher Linear Discrimination

Modern Approaches:

Support Vector Machine  (toy graphic illustration)

Distance Weighted Discrimination

-
Idea:  “feel all of the data”, not just “support vectors”

-
Type into Google, to obtain paper



-
Uses serious optimization (2nd Order Cone Methods)

Application to Batch Effect Data

SVM Adjustment
· Looks reminiscent of above problem

· 2nd application to residuals still has gap?

· Must, since HDLSS, but “perhaps very small”?

DWD Adjustment
· Again reminiscent of above example

· 2nd application to residuals looks great!

Application to Batch Effect Data (cont.)

Careful:     used different criteria for assessment

SVM adjustment,   DWD assessment
· Now looks like similar results

· Reason for this?    Geometrical Representation

Final result:        Adjusted 2-d Scatterplots
· Applied Stepwise:      1.  g vs. h & j,      2. h  vs.  j
· Great “mixing” of batches,  i.e. successful adjustment

DWD vs. SVM Simulations

3 simulations:

Dist’n 1

Dist’n 2

Dist’n 3
· Shows each method is sometimes best

· DWD is “usually near best”  (i.e.  “good overall”)

· Note:    all are closer together for higher  
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· Explanation:    Geometrical Representation

Some Simple “Paradoxes” of HDLSS data

For  
[image: image17.wmf]d

  dim’al “Standard Normal” dist’n:
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Euclidean Distance to Origin (as  
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· Data lie roughly on surface of sphere of radius 
[image: image21.wmf]d


· Yet origin is point of “highest density”???

· Paradox resolved by “density w. r. t. Lebesgue Measure”

Some Simple “Paradoxes” of HDLSS data (cont.)

For  
[image: image22.wmf]d

  dim’al “Standard Normal” dist’n:
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Euclidean Distance between  
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· Distance tends to non-random constant 

· Can extend to  
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· Where do they all go???   (we can only perceive 3 dim’ns)

Some Simple “Paradoxes” of HDLSS data (cont.)

For  
[image: image30.wmf]d

  dim’al “Standard Normal” dist’n:
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High dim’al Angles(as  
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· “Everything is orthogonal”???

· Where do they all go???   (again our perceptual limitations)

· Again 1st order structure is non-random
Geometrical Representation of HDLSS data

Assume   
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1. Study Subspace Generated by Data

a. Hyperplane through 0, of dimension  
[image: image38.wmf]n


b. Points are “nearly equidistant to 0”, & dist 
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c. Within plane, can “rotate towards  
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 Unit Simplex”

d. All Gaussian data sets are“near U. Simplex vertices”!!!

e. “Randomness” appears only in rotation of simplex

Two Point Toy Example
Geometrical Representation of HDLSS data (cont.)

Assume   
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2. Study Hyperplane Generated by Data

a. 
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 dimensional hyperplane

b. Points are pairwise equidistant,    dist 
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c. Points lie at vertices of  
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 “regular 
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d. Again “randomness in data” is only in rotation
e. Surprisingly rigid structure in data?

Three Point Toy Example
Geometrical Representation of HDLSS data (cont.)

Simulation View:  shows “rigidity after rotation”

Straightforward Generalizations:

· non-Gaussian data:    only need moments

· non-independent:    use “mixing conditions”


[image: image48.wmf]M


All based on simple “Laws of Large Numbers”

Geometrical Representation of HDLSS data (cont.)

Explanation of Observed Behavior (Batch Effect & Simulations):

Recall “everything similar for very high 
[image: image49.wmf]d

” 

· 2 popn’s are 2 simplices 

· everything is the same distance from the other class

· i.e. everything is a support vector

· i.e. all sensible directions show “data piling”

· so “sensible methods are all nearly the same”

Some Carry Away Lessons

· HDLSS contexts are worth more study

· DWD better than SVM for HDLSS data

· “Randomness” in HDLSS data is only rotations
· Modulo random rotation, have “constant simplex shape”

· How to put this new structure to serious work?

Start Old Material from HDLSS talk

Nature of HDLSS Gaussian Data

For  
[image: image50.wmf]d

  dim’al “Standard Normal” dist’n:
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Euclidean Distance to Origin:
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as  
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Conclusion:  data lie roughly on surface of sphere of radius 
[image: image54.wmf]d


Nature of HDLSS Gaussian Data (cont.)

Paradox:
· Origin is point of highest density

· Data lie on “outer shell”

Nature of HDLSS Gaussian Data (cont.)

Lessons:

· High dim’al space is “strange”     (to our percept’l systems)

· “density” needs careful interp’n    (high 
[image: image55.wmf]d

 space is “vast”)

· Low dim’al proj’ns can mislead

· Need new conceptual models

Nature of HDLSS Gaussian Data (cont.)

High dim’al Angles:

For any (fixed or indep. random) 
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Lessons:

· High dim’al space is vast                (where do they all go?)

· Low dim’al proj’s “hide structure”

· Need new conceptual models

Start Old Material form DWD talk

Discrimination:    Notation

Training Data:     
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-
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    are d-dimensional vectors


-
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    indicators for Class +1 or –1


-
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Classical Approaches

Fisher Linear Discrimination

(A. K. A. Linear Discriminant Analysis)

Gaussian Likelihood Ratio


-
Drawback 1:    Strong Gaussian assumption

-
Drawback 2:    Breaks down for HDLSS situations

Fisher Linear Discrimination

Common misperception:

-
Requires Gaussian distributions to work well

Careful Look:

· Can derive as Gaussian Likelihood (equal cov. case)

· But also has purely nonparametric derivation

(starting from “Mean Difference”)

Mean Difference Discrimination

A.K.A.    Centroid method

Simple Idea:   

· Compute class means

· Assign new values to closest mean

2 class representation:           {2-d toy example}
· Separating plane

· Normal vector is mean difference

· “Skewer through two meatballs”

Mean Difference Discrimination (cont.)

Problem with mean difference:        {2-d toy example}
Population differences may be driven by “other aspects”

Nonparametric view of FLD:            {FLD improvement}
Solves this in “common covariance case”

Mean Difference vs. FDL

Classical View:    FLD is better

· Same performance when Mean Difference works well

· FLD is better on some other occasions 

HDLSS view:

· E.g. Gaussian, dim 1:  means +-2.2, other dim’s:  means 0

· FLD grossly overfits, results in poor generalizability

· Mean Difference is much more stable, (optimal?)

Support Vector Machines

Idea: Improved handling of very non-Gaussian data

E.g. data from “polynomial embedding”

Or more general “kernel embedding”

Visual Introduction {Toy Example}:

· Find “separating plane”

· To maximize “distance from data to plane”

· In particular “smallest distance”

· Data points closest are called “support vectors”, 

Support Vector Machines  (cont.)

More Careful View:   

Setup Optimization problem, based on:


-
Normal Vector    
[image: image63.wmf]w

     (assume  
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-
Location (determines intercept)    
[image: image65.wmf]b



-
Residuals (right side)     
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-
Residuals (wrong side)     
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-
Solve (convex problem) by quadratic programming

Support Vector Machines  (cont.)

Performance in {Toy Example}:

· Much more stable for HDLSS than FLD
· But not quite so stable as Mean Difference
· Note “piling at margin”, somewhat like FLD

· Suggests “feels support vectors” too strongly???

· Possible to improve?

· Idea:    Replace “minimum distance” by “average”

I.e. optimization “feels all of the data”

Distance Weighted Discrimination

Based on Optimization Problem:
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More precisely:    Work in appropriate penalty for violations

Optimization Method:     Second Order Cone Programming

· “Generalization” of “convex quadratic”

· Allows fast greedy solution

· Can use available fast software

Distance Weighted Discrimination (cont.)

Performance in {Toy Example}:

· Clearly superior to FLD and SVM
· Very competitive with Mean Difference
· Solves above problem?

Broader Comparison:      Same Gaussians, wide array of dim’s

· SVM substantially worse

· MD best, DWD close (no significant difference)

Distance Weighted Discrimination (cont.)

Outlier Mixture Example:    

80%    dim 1, mean +-2.2,   other dims, mean 0

20%    dim1, +-100,  dim2 , +-500, others 0

· Disaster for MD (since means driven by gross outliers)

· SVM and DWD very solid (since “feel data near plane”)

· SVM and DWD difference not significant

Distance Weighted Discrimination (cont.)

Wobble Mixture Example:

80%    dim 1, mean +-2.2,   other dims, mean 0

20%    dim1, +-0.1,  random dim , +-100, others 0

· Mean Difference loses big (since big impact on means)

· SVM loses (“margin push” at large dist. has leverage)

· DWD slightly better (allows “weighted influence”)

· Difference is statistically significant

Distance Weighted Discrimination (cont.)

Nested Spheres Example:

1st d/2 dim’s, Gaussian with var 1 or C

2nd d/2 dim’s, the squares of the 1st dim’s

(as for 2nd degree polynomial embedding)


-
Results are noncomparable (seems realistic)

· DWD competitive with best everywhere

-
MD often better than SVM???   (esp. higher d???)

Distance Weighted Discrimination (cont.)

Some real data:      Micro-Array analysis of gene expression

Summaries over various trials (pairwise tests):

· DWD always competitive with best

· Occasionally much better

· Consistent with experience in simulation

Distance Weighted Discrimination (cont.)

Recent Interesting Example  (Monica Benito)

Micro-array Batch Effects,  apparent in PCA 2-d projections
Approach:    Use discrimination to find “direction of correction”

DWD correction:    looks excellent

SVM correction:    less attractive and less effective

Both very reminiscent of earlier toy examples

Distance Weighted Discrimination (cont.)

Adjustment for 2nd Split of Batch Effects

DWD again excellent

SVM significantly worse

· Note substantial amount “left over”

· Thus “didn’t really get direction right”

· Seems to be driven by spurious effects (like FLD before)

Distance Weighted Discrimination (cont.)

Some interesting future directions:


+
Mathematical Theory?


+
Modified criteria:    
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+
Multiclass Version?


+
“Feature Selection” Modifications?


+
“Locality Driven Feature Selection”?
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