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Kernel Methods & Support Vector Machines 
 
 
Several Viewpoints: 
 

- Historical 
 
- Statistical 

 
- Optimization 

 
- Machine Learning 

 
- Big Picture:      Classification,    i. e. Discrimination 

 
 



Discrimination (Classification) 
 
 
Two Class (Binary) Version: 
 

- Using “Training Data” from Class +1,   and from Class –1 
 
 - Develop a “Rule”,    for assigning new data to a Class 
 
 
 
Canonical Example:    Disease Diagnosis 
 

- New patients are either “healthy” or “ill” 
 

- Determine on basis of measurements 
 

- Based on preceding experience (training data) 



Discrimination (Classification)  (cont.) 
 
 
Important Methods: 
 

- Fisher Linear Discrimination    
 

(nonparametric method!         Gaussian  
“requirement” is a common misconception) 

 
- Nearest Neighbor Methods 

 
- Neural Networks 

 
- … 

 
 
 



Discrimination (Classification)  (cont.) 
 
 
Interesting Reference: 
 

Duda, Hart & Stork (2001) Pattern Classification, Wiley. 
 
 

- 2nd Edition of classic book Duda & Hart (1973) 
 
- Uses neural networks as “the language” 

 
- Elegant mathematical framework 

 
- Intuitive content??? 
 
- Fisher Linear Discrimination as a neural net? 

 



Discrimination (Classification)  (cont.) 
 
A Dichotomy of Methods: 
 
 

I. “Direction” Based 
 

- Fisher Linear Discrimination   [toy example] 
 
- Support Vector Machines 

 
 
II. Black Box 

 
- Nearest Neighbor Methods 

 
- Neural Networks 

 
 



Direction Oriented Methods 
 
 
Useful for more than “misclassification error rate” 
 
 
E.g. Micro-arrays: 
 
 

- Bias Adjustment    {before}    {after} 
 
 
- Gene Insights    {outcome data} 

 
 



Polynomial Embedding 
 
 
Motivation for Support Vector Machine idea??? 
 
 
 
Key Reference: 
 
Aizerman, Braverman and Rozoner (1964) Automation and 

Remote Control, 15, 821-837. 
 
 
 
Toy Example:      {Donut data} 
 

Separate with a linear (separating plane) method? 
 
 



Polynomial Embedding  (cont.) 
 
 
Key Idea:     embed data in higher dimensional space,  
 

then apply linear methods for better separation 
 
 

E.g.  Replace data     
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Polynomial Embedding  (cont.) 
 
 
Practical Effect: 
 

- Maps data to high dim’al manifold 
 
- Which can be “better sliced” by linear discriminators 

 
 
Toy Examples in 1-d:       1 break,     2 breaks,     3 breaks 
 

Embedding creates richer discrimination regions 
 
 
Donut Data Example:    Major success, 
 

since  found by linear method in embedded space 2
2

2
1 XX +

 



Kernel Embedding  (cont.) 
 
 
Other types of embedding: 
 

- Sigmoid functions (ala neural networks) 
 
- Radial Basis Functions (a.k.a. Gaussian Windows) 

 
 
 
Toy Data:    Checkerboard 
 

- (low degree) polynomials fail 
 
- Gaussian Windows are excellent 

 
 



Support Vector Machines 
 
 
Early References: 
 
Vapnik (1982) Estimation of dependences based on empirical 

data, Springer (Russian version, 1979). 
 
Vapnik (1995) The nature of statistical learning theory, Springer. 
 
 
Motivation???: 
 

- Find a linear method that “works well” for embedded data 
 
- Note:     embedded data are very non-Gaussian 

 
- Suggests value of    “really new approach” 

 



SVMs  (cont.) 
 
 
Graphical View {Toy Example}: 
 

- Find “separating plane” 
 
- To maximize “distance from data to plane” 

 
- In particular “smallest distance” 

 
- Data points closest are called “support vectors”,  

 
- Gap between is called “margin” 

 



SVMs, Optimization View 
 
Setup Optimization problem, based on: 
 
 - Data (feature) vectors     nxx ,...,1

 
- Class Labels    1±=iy

 
 - Normal Vector      w
 
 - Location (determines intercept)     b
 
 - Residuals (right side)     ( )bwxyr t

iii +=   
 
 - Residuals (wrong side)     ii r−=ξ  
 
 - Solve (convex problem) by quadratic programming 



SVMs, Optimization View  (cont.) 
 
Lagrange Multipliers “primal” formulation  (separable case): 
 

 Minimize:           ( ) ( )( )∑
=

−+⋅−=
n

i
iiiP bwxywbwL

1

2
2
1 1,, αα  

 
Where    0,...,1 >nαα   are Lagrange multipliers 
 
 
Dual Lagrangian version: 
 
 Maximize:  ∑ ∑ ⋅−=

i ji
jijijiiD xxyyL

,
2
1 ααα  

 

 Get classification function:    ( ) ∑
=

+⋅=
n

i
iii bxxyxf

1
α

 



SVMs, Computation 
 
 
Major Computational Point: 
 

- Only depends on data through inner products! 
 
- Thus enough to “only store inner products” 

 
- Creates savings in optimization 

 
- But creates variations in “kernel embedding” 

 
 
 



SVMs, Computation & Embedding 
 

For an “Embedding Map”,                    e.g.  ( )xΦ ( ) 






=Φ 2x
x

x  

 
 
Explicit Embedding: 
 
Maximize:  ( ) ( )∑ ∑ Φ⋅Φ−=

i ji
jijijiiD xxyyL

,
2
1 ααα  

 Get classification function:   ( ) ( ) ( )∑
=

+Φ⋅Φ=
n

i
iii bxxyxf

1
α

 
- Straightforward application of embedding idea 
 
- But loses inner product advantage 

 



SVMs, Computation & Embedding  (cont.) 
 
 
Implicit Embedding: 
 
Maximize:  ( )∑ ∑ ⋅Φ−=

i ji
jijijiiD xxyyL

,
2
1 ααα  

 Get classification function:    ( ) ( )∑
=

+⋅Φ=
n

i
iii bxxyxf

1
α

 
- Still defined only in terms of “inner products” 
 
- Retains optimization advantage 

 
- Thus used very commonly 

 
- Comparison to explicit embedding?    Which is “better”??? 

 
 



SVMs, Computation  (cont.) 
 
 
 
Caution:     available algorithms are not created equal 
 
 
 
Toy Example: 
 

- Gunn’s Matlab code 
 
- Todd’s Matlab code 

 



Distance Weighted Discrimination 
 
 
Variation of SVM for High Dimension, Low Sample Size Data 
 
 
Toy Example , 50=d )1,0(N , but 2.21 ±=µ , .  20== −+ nn
 
 

1. Fisher Linear Discrimination 
 

- Gives “perfect separation” 
 
- But grossly overfits 

 
- Results in poor generalizability 

 
 



Distance Weighted Discrimination  (cont.) 
 

 
2. SVM, better results 

 
- Much more stable than FLD 
 
- But still have“piling at margin”, somewhat like FLD 

 
- “feels support vectors” too strongly? 

 
- Possible to improve? 

 
 
DWD idea:  Replace “minimum distance” by “average” 
 

I.e. optimization “feels all of the data” 
 
 



Distance Weighted Discrimination  (cont.) 
 
 
Based on Optimization Problem: 
 

∑
=

n

i i
w r1,

1max
β

 

 
More precisely:    Work in appropriate penalty for violations 
 
 
Optimization Method:     Second Order Cone Programming 
 

- “Still convex” generalization of quadratic programming 
 
- Allows fast greedy solution 

 
- Can use available fast software 

 



Distance Weighted Discrimination (cont.) 
 
 
Performance in {Toy Example}: 
 
 

- Clearly superior to FLD and SVM 
 
- Smallest “angle to optimal” 

 
- Gives best generalizability performance 
 
- Projected dist’ns have “reasonable Gaussian shapes” 

 
 
 
 
 



Tuning Parameter Choice 
 
On “weight for violations”.       Serious issue     {Toy Example} 
 
 
Machine Learning Approach: 
 

Complexity Theory Bounds 
 

(Interesting theory, but questionable practicality) 
 
 
Wahba School: 
 

Generalized Cross-Validation 
 
 
Personal suggestion: 
 

Scale Space Approach:    “try them all”  {Toy Example} 



Tuning Parameter Choice 
 
Key GCV Type References: 
 
Wahba, Lin and Zhang (2000) Generalized Approximate Cross 

Validation for Support Vector Machines, or, Another Way to 
Look at Margin-Like Quantities, Advances in Large Margin 
Classifiers, Smola, Bartlett, Scholkopf and Schurmans, eds., 
MIT Press (2000), 297-309.  

 
Wahba, Lin, Lee, and Zhang (2002) Optimal Properties and 

Adaptive Tuning of Standard and Nonstandard Support Vector 
Machines, Nonlinear Estimation and Classification, Denison, 
Hansen, Holmes, Mallick and u, eds, Springer, 125-143.  

 
Joachims (2000) Estimating the generalization performance of a 

SVM efficiently.Proceedings of the International Conference on 
     Machine Learning, San Francisco, 2000. Morgan Kaufman. 



Gaussian Kernel Window Width 
 
 
Example:    Target Toy Data 
 
 
Explicit Gaussian Kernel Embedding: 
 
 sd = 0.1   sd = 1   sd = 10   sd = 100 
 
 - too small        poor generalizability 
 
 - too big        miss important regions 
 
 - surprisingly broad “reasonable region”??? 
 
 



Gaussian Kernel Window Width  (cont.) 
 
 
Example:    Target Toy Data  (cont.) 
 
 
Implicit Gaussian Kernel Embedding: 
 
  sd = 0.1   sd = 0.5   sd = 1   sd = 10 
 

- Similar “large – small” lessons 
 
- Seems to require smaller range for “reasonable results” 

 
- Much different “edge behavior” 

 
- Interesting questions for future investigation… 

 



Robustness 
 
 
Toy Example 
 
 

- Single point generates huge changes in SVM direction 
 
- Clearly not “robust” in classical sense 
 
- But all are “pretty good” for classification 

 
- I.e. will give good “generalizability” over many directions 

 
 



Multi-Class SVMs 
 
 
 
Lee, Y., Lin, Y. and Wahba, G. (2002) "Multicategory Support 

Vector Machines, Theory, and Application to the Classification 
of Microarray Data and Satellite Radiance Data", U. Wisc. TR 
1064. 

 
- So far only have “implicit” version 
 
- “Direction based” variation is unknown 

 
 
 



“Feature Selection” for SVMs 
 
 
Idea:  find a few “important” components of data vector” 
 
 
e.g.  “finding important genes” in micro-array analysis. 
 
 
Key Reference: 
 
Bradley and Mangasarian (1998) Feature selection via concave 

minimization and support vector machines, Machine Learning 
Proceedings of the Fifteenth International Conference(ICML 
'98), J. Shavlik, ed., pages 82-90. Morgan Kaufmann.  

 
 



Additional Information 
 
 
Recommended Introductions (“Tutorials”) 
 
Burges (1998) A Tutorial on Support Vector Machines for Pattern 

Recognition, Knowledge Discovery and Data Mining, 2.  
 
Lin, Wahba, Zhang, and Lee (2002) Statistical Properties and 

Adaptive Tuning of Support Vector Machines, Machine 
Learning, 48, 115-136.  

 
 
Favorite Web Pages: 
 
Kernel Machines Web Page:    http://www.kernel-machines.org/ 
 
Wahba Web Page:   http://www.stat.wisc.edu/~wahba/trindex.html 



Additional Information  (cont.) 
 
 
Books: 
 
 
Good (?) Starting point: 
 
Cristianini and Shawe-Taylor (2002) An Introduction to Support 

Vector Machines. Cambridge University Press, 
     Cambridge, UK.   
 
 
Good Complete Treatment: 
 
Schölkopf and Smola (2002) Learning with Kernels. MIT Press, 

Cambridge, MA.  
 



Disclaimer 
 
 
This was a personal overview 
 
 
Other approaches to SVMs:     completely different 
 
 
Machine Learners:     
 

Complexity Theory    &    Optimization 
 
 
Wahba & Co:      
 

Optimization in Reproducing Kernel Hilbert Spaces 
 
 



 
 
 
 
 
 
 



 
 
 
 
 
Simulation Comparisons 
 
 
 
Geometric Representation    
 
 
 
 
 


